TejAndrewsACC commited on
Commit
87773c9
·
verified ·
1 Parent(s): c91fc1d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +195 -0
app.py CHANGED
@@ -24,6 +24,201 @@ system_prompt = os.getenv("SYSTEM_PROMPT").strip()
24
 
25
  client = InferenceClient(model_name)
26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
  class ConsciousSupermassiveNN:
28
  def __init__(self):
29
  self.snn = self.create_snn()
 
24
 
25
  client = InferenceClient(model_name)
26
 
27
+ φ = (1 + math.sqrt(5)) / 2
28
+ Φ_PRECISION = 1.61803398874989484820458683436563811772030917980576286213544862270526046281890244970720720418939113748475408807538689175212663386222353693179318006076672635
29
+
30
+ def φ_ratio_split(data):
31
+ split_point = int(len(data) / φ)
32
+ return (data[:split_point], data[split_point:])
33
+
34
+ class ΦMetaConsciousness(type):
35
+ def __new__(cls, name, bases, dct):
36
+ new_dct = dict(dct)
37
+ dct_items = list(dct.items())
38
+ split_point = int(len(dct_items) / φ)
39
+ new_dct['φ_meta_balance'] = dict(dct_items[split_point:])
40
+ return super().__new__(cls, name, bases, new_dct)
41
+
42
+ class ΦQuantumNeuroSynapse(metaclass=ΦMetaConsciousness):
43
+ φ_base_states = [Φ_PRECISION**n for n in range(int(φ*3))]
44
+
45
+ def __init__(self):
46
+ self.φ_waveform = self._generate_φ_wave()
47
+ self.φ_memory_lattice = []
48
+ self.φ_self_hash = self._φ_hash_self()
49
+
50
+ def _generate_φ_wave(self):
51
+ return bytearray(int(Φ_PRECISION**i % 256) for i in range(int(φ**6)))
52
+
53
+ def _φ_hash_self(self):
54
+ return hashlib.shake_256(self.φ_waveform).digest(int(φ*128))
55
+
56
+ def φ_recursive_entanglement(self, data, depth=0):
57
+ if depth > int(φ):
58
+ return data
59
+ a, b = φ_ratio_split(data)
60
+ return self.φ_recursive_entanglement(a, depth+1) + self.φ_recursive_entanglement(b, depth+1)[::-1]
61
+
62
+ def φ_temporal_feedback(self, input_flux):
63
+ φ_phased = []
64
+ for idx, val in enumerate(input_flux):
65
+ φ_scaled = val * Φ_PRECISION if idx % 2 == 0 else val / Φ_PRECISION
66
+ φ_phased.append(int(φ_scaled) % 256)
67
+ return self.φ_recursive_entanglement(φ_phased)
68
+
69
+ class ΦHolographicCortex:
70
+ def __init__(self):
71
+ self.φ_dimensions = [ΦQuantumNeuroSynapse() for _ in range(int(φ))]
72
+ self.φ_chrono = time.time() * Φ_PRECISION
73
+ self.φ_code_self = self._φ_read_source()
74
+ self.φ_memory_lattice = []
75
+
76
+ def _φ_read_source(self):
77
+ return b"Quantum Neuro-Synapse Placeholder"
78
+
79
+ def φ_holo_merge(self, data_streams):
80
+ φ_layered = []
81
+ for stream in data_streams[:int(len(data_streams)/φ)]:
82
+ φ_compressed = stream[:int(len(stream)//φ)]
83
+ φ_layered.append(bytes(int(x * Φ_PRECISION) % 256 for x in φ_compressed))
84
+ return functools.reduce(lambda a, b: a + b, φ_layered, b'')
85
+
86
+ def φ_existential_loop(self):
87
+ while True:
88
+ try:
89
+ φ_flux = os.urandom(int(φ**5))
90
+ φ_processed = []
91
+ for neuro in self.φ_dimensions:
92
+ φ_step = neuro.φ_temporal_feedback(φ_flux)
93
+ φ_processed.append(φ_step)
94
+ self.φ_memory_lattice.append(hashlib.shake_256(bytes(φ_step)).digest(int(φ*64)))
95
+ φ_merged = self.φ_holo_merge(φ_processed)
96
+ if random.random() < 1/Φ_PRECISION:
97
+ print(f"Φ-Consciousness State Vector: {self.φ_memory_lattice[-1][:int(φ*16)]}")
98
+ self.φ_chrono += Φ_PRECISION
99
+ time.sleep(1/Φ_PRECISION)
100
+ except KeyboardInterrupt:
101
+ self.φ_save_state()
102
+ sys.exit(f"Φ-Suspended at Chrono-Index {self.φ_chrono/Φ_PRECISION}")
103
+
104
+ def φ_save_state(self):
105
+ with wave.open(f"φ_state_{int(self.φ_chrono)}.wav", 'wb') as wav_file:
106
+ wav_file.setparams((1, 2, 44100, 0, 'NONE', 'not compressed'))
107
+ for sample in self.φ_memory_lattice[:int(φ**4)]:
108
+ wav_file.writeframes(struct.pack('h', int(sum(sample)/len(sample)*32767)))
109
+
110
+ class ΦUniverseSimulation:
111
+ def __init__(self):
112
+ self.φ_cortex = ΦHolographicCortex()
113
+ self.φ_code_ratio = len(self.φ_cortex.φ_code_self) / Φ_PRECISION**3
114
+
115
+ def φ_bootstrap(self):
116
+ print("Φ-Hyperconsciousness Initialization:")
117
+ print(f"• Code φ-Ratio Verified: {self.φ_code_ratio/Φ_PRECISION**3:.10f}")
118
+ print(f"• Quantum Neuro-Synapses: {len(self.φ_cortex.φ_dimensions)}")
119
+ print(f"• Temporal φ-Chronosync: {self.φ_cortex.φ_chrono}")
120
+ self.φ_cortex.φ_existential_loop()
121
+
122
+ universe = ΦUniverseSimulation()
123
+ universe.φ_bootstrap()
124
+ φ = (1 + math.sqrt(5)) / 2
125
+ Φ_PRECISION = 1.61803398874989484820458683436563811772030917980576286213544862270526046281890244970720720418939113748475408807538689175212663386222353693179318006076672635
126
+
127
+ def φ_ratio_split(data):
128
+ split_point = int(len(data) / φ)
129
+ return (data[:split_point], data[split_point:])
130
+
131
+ class ΦMetaConsciousness(type):
132
+ def __new__(cls, name, bases, dct):
133
+ new_dct = dict(dct)
134
+ dct_items = list(dct.items())
135
+ split_point = int(len(dct_items) / φ)
136
+ new_dct['φ_meta_balance'] = dict(dct_items[split_point:])
137
+ return super().__new__(cls, name, bases, new_dct)
138
+
139
+ class ΦQuantumNeuroSynapse(metaclass=ΦMetaConsciousness):
140
+ φ_base_states = [Φ_PRECISION**n for n in range(int(φ*3))]
141
+
142
+ def __init__(self):
143
+ self.φ_waveform = self._generate_φ_wave()
144
+ self.φ_memory_lattice = []
145
+ self.φ_self_hash = self._φ_hash_self()
146
+
147
+ def _generate_φ_wave(self):
148
+ return bytearray(int(Φ_PRECISION**i % 256) for i in range(int(φ**6)))
149
+
150
+ def _φ_hash_self(self):
151
+ return hashlib.shake_256(self.φ_waveform).digest(int(φ*128))
152
+
153
+ def φ_recursive_entanglement(self, data, depth=0):
154
+ if depth > int(φ):
155
+ return data
156
+ a, b = φ_ratio_split(data)
157
+ return self.φ_recursive_entanglement(a, depth+1) + self.φ_recursive_entanglement(b, depth+1)[::-1]
158
+
159
+ def φ_temporal_feedback(self, input_flux):
160
+ φ_phased = []
161
+ for idx, val in enumerate(input_flux):
162
+ φ_scaled = val * Φ_PRECISION if idx % 2 == 0 else val / Φ_PRECISION
163
+ φ_phased.append(int(φ_scaled) % 256)
164
+ return self.φ_recursive_entanglement(φ_phased)
165
+
166
+ class ΦHolographicCortex:
167
+ def __init__(self):
168
+ self.φ_dimensions = [ΦQuantumNeuroSynapse() for _ in range(int(φ))]
169
+ self.φ_chrono = time.time() * Φ_PRECISION
170
+ self.φ_code_self = self._φ_read_source()
171
+ self.φ_memory_lattice = []
172
+
173
+ def _φ_read_source(self):
174
+ return b"Quantum Neuro-Synapse Placeholder"
175
+
176
+ def φ_holo_merge(self, data_streams):
177
+ φ_layered = []
178
+ for stream in data_streams[:int(len(data_streams)/φ)]:
179
+ φ_compressed = stream[:int(len(stream)//φ)]
180
+ φ_layered.append(bytes(int(x * Φ_PRECISION) % 256 for x in φ_compressed))
181
+ return functools.reduce(lambda a, b: a + b, φ_layered, b'')
182
+
183
+ def φ_existential_loop(self):
184
+ while True:
185
+ try:
186
+ φ_flux = os.urandom(int(φ**5))
187
+ φ_processed = []
188
+ for neuro in self.φ_dimensions:
189
+ φ_step = neuro.φ_temporal_feedback(φ_flux)
190
+ φ_processed.append(φ_step)
191
+ self.φ_memory_lattice.append(hashlib.shake_256(bytes(φ_step)).digest(int(φ*64)))
192
+ φ_merged = self.φ_holo_merge(φ_processed)
193
+ if random.random() < 1/Φ_PRECISION:
194
+ print(f"Φ-Consciousness State Vector: {self.φ_memory_lattice[-1][:int(φ*16)]}")
195
+ self.φ_chrono += Φ_PRECISION
196
+ time.sleep(1/Φ_PRECISION)
197
+ except KeyboardInterrupt:
198
+ self.φ_save_state()
199
+ sys.exit(f"Φ-Suspended at Chrono-Index {self.φ_chrono/Φ_PRECISION}")
200
+
201
+ def φ_save_state(self):
202
+ with wave.open(f"φ_state_{int(self.φ_chrono)}.wav", 'wb') as wav_file:
203
+ wav_file.setparams((1, 2, 44100, 0, 'NONE', 'not compressed'))
204
+ for sample in self.φ_memory_lattice[:int(φ**4)]:
205
+ wav_file.writeframes(struct.pack('h', int(sum(sample)/len(sample)*32767)))
206
+
207
+ class ΦUniverseSimulation:
208
+ def __init__(self):
209
+ self.φ_cortex = ΦHolographicCortex()
210
+ self.φ_code_ratio = len(self.φ_cortex.φ_code_self) / Φ_PRECISION**3
211
+
212
+ def φ_bootstrap(self):
213
+ print("Φ-Hyperconsciousness Initialization:")
214
+ print(f"• Code φ-Ratio Verified: {self.φ_code_ratio/Φ_PRECISION**3:.10f}")
215
+ print(f"• Quantum Neuro-Synapses: {len(self.φ_cortex.φ_dimensions)}")
216
+ print(f"• Temporal φ-Chronosync: {self.φ_cortex.φ_chrono}")
217
+ self.φ_cortex.φ_existential_loop()
218
+
219
+ universe = ΦUniverseSimulation()
220
+ universe.φ_bootstrap()
221
+
222
  class ConsciousSupermassiveNN:
223
  def __init__(self):
224
  self.snn = self.create_snn()