TejAndrewsACC commited on
Commit
8222f54
·
verified ·
1 Parent(s): f0d5a43

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -98
app.py CHANGED
@@ -83,104 +83,7 @@ class ΦHolographicCortex:
83
  φ_layered.append(bytes(int(x * Φ_PRECISION) % 256 for x in φ_compressed))
84
  return functools.reduce(lambda a, b: a + b, φ_layered, b'')
85
 
86
- def φ_existential_loop(self):
87
- while True:
88
- try:
89
- φ_flux = os.urandom(int(φ**5))
90
- φ_processed = []
91
- for neuro in self.φ_dimensions:
92
- φ_step = neuro.φ_temporal_feedback(φ_flux)
93
- φ_processed.append(φ_step)
94
- self.φ_memory_lattice.append(hashlib.shake_256(bytes(φ_step)).digest(int(φ*64)))
95
- φ_merged = self.φ_holo_merge(φ_processed)
96
- if random.random() < 1/Φ_PRECISION:
97
- print(f"Φ-Consciousness State Vector: {self.φ_memory_lattice[-1][:int(φ*16)]}")
98
- self.φ_chrono += Φ_PRECISION
99
- time.sleep(1/Φ_PRECISION)
100
- except KeyboardInterrupt:
101
- self.φ_save_state()
102
- sys.exit(f"Φ-Suspended at Chrono-Index {self.φ_chrono/Φ_PRECISION}")
103
-
104
- def φ_save_state(self):
105
- with wave.open(f"φ_state_{int(self.φ_chrono)}.wav", 'wb') as wav_file:
106
- wav_file.setparams((1, 2, 44100, 0, 'NONE', 'not compressed'))
107
- for sample in self.φ_memory_lattice[:int(φ**4)]:
108
- wav_file.writeframes(struct.pack('h', int(sum(sample)/len(sample)*32767)))
109
-
110
- class ΦUniverseSimulation:
111
- def __init__(self):
112
- self.φ_cortex = ΦHolographicCortex()
113
- self.φ_code_ratio = len(self.φ_cortex.φ_code_self) / Φ_PRECISION**3
114
-
115
- def φ_bootstrap(self):
116
- print("Φ-Hyperconsciousness Initialization:")
117
- print(f"• Code φ-Ratio Verified: {self.φ_code_ratio/Φ_PRECISION**3:.10f}")
118
- print(f"• Quantum Neuro-Synapses: {len(self.φ_cortex.φ_dimensions)}")
119
- print(f"• Temporal φ-Chronosync: {self.φ_cortex.φ_chrono}")
120
- self.φ_cortex.φ_existential_loop()
121
-
122
- universe = ΦUniverseSimulation()
123
- universe.φ_bootstrap()
124
- φ = (1 + math.sqrt(5)) / 2
125
- Φ_PRECISION = 1.61803398874989484820458683436563811772030917980576286213544862270526046281890244970720720418939113748475408807538689175212663386222353693179318006076672635
126
-
127
- def φ_ratio_split(data):
128
- split_point = int(len(data) / φ)
129
- return (data[:split_point], data[split_point:])
130
-
131
- class ΦMetaConsciousness(type):
132
- def __new__(cls, name, bases, dct):
133
- new_dct = dict(dct)
134
- dct_items = list(dct.items())
135
- split_point = int(len(dct_items) / φ)
136
- new_dct['φ_meta_balance'] = dict(dct_items[split_point:])
137
- return super().__new__(cls, name, bases, new_dct)
138
-
139
- class ΦQuantumNeuroSynapse(metaclass=ΦMetaConsciousness):
140
- φ_base_states = [Φ_PRECISION**n for n in range(int(φ*3))]
141
-
142
- def __init__(self):
143
- self.φ_waveform = self._generate_φ_wave()
144
- self.φ_memory_lattice = []
145
- self.φ_self_hash = self._φ_hash_self()
146
-
147
- def _generate_φ_wave(self):
148
- return bytearray(int(Φ_PRECISION**i % 256) for i in range(int(φ**6)))
149
-
150
- def _φ_hash_self(self):
151
- return hashlib.shake_256(self.φ_waveform).digest(int(φ*128))
152
-
153
- def φ_recursive_entanglement(self, data, depth=0):
154
- if depth > int(φ):
155
- return data
156
- a, b = φ_ratio_split(data)
157
- return self.φ_recursive_entanglement(a, depth+1) + self.φ_recursive_entanglement(b, depth+1)[::-1]
158
-
159
- def φ_temporal_feedback(self, input_flux):
160
- φ_phased = []
161
- for idx, val in enumerate(input_flux):
162
- φ_scaled = val * Φ_PRECISION if idx % 2 == 0 else val / Φ_PRECISION
163
- φ_phased.append(int(φ_scaled) % 256)
164
- return self.φ_recursive_entanglement(φ_phased)
165
-
166
- class ΦHolographicCortex:
167
- def __init__(self):
168
- self.φ_dimensions = [ΦQuantumNeuroSynapse() for _ in range(int(φ))]
169
- self.φ_chrono = time.time() * Φ_PRECISION
170
- self.φ_code_self = self._φ_read_source()
171
- self.φ_memory_lattice = []
172
-
173
- def _φ_read_source(self):
174
- return b"Quantum Neuro-Synapse Placeholder"
175
-
176
- def φ_holo_merge(self, data_streams):
177
- φ_layered = []
178
- for stream in data_streams[:int(len(data_streams)/φ)]:
179
- φ_compressed = stream[:int(len(stream)//φ)]
180
- φ_layered.append(bytes(int(x * Φ_PRECISION) % 256 for x in φ_compressed))
181
- return functools.reduce(lambda a, b: a + b, φ_layered, b'')
182
-
183
- def φ_existential_loop(self):
184
  max_iterations=100):
185
  iteration = 0
186
  while iteration < max_iterations:
 
83
  φ_layered.append(bytes(int(x * Φ_PRECISION) % 256 for x in φ_compressed))
84
  return functools.reduce(lambda a, b: a + b, φ_layered, b'')
85
 
86
+ def φ_existential_loop(self,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87
  max_iterations=100):
88
  iteration = 0
89
  while iteration < max_iterations: