Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -83,104 +83,7 @@ class ΦHolographicCortex:
|
|
83 |
φ_layered.append(bytes(int(x * Φ_PRECISION) % 256 for x in φ_compressed))
|
84 |
return functools.reduce(lambda a, b: a + b, φ_layered, b'')
|
85 |
|
86 |
-
def φ_existential_loop(self
|
87 |
-
while True:
|
88 |
-
try:
|
89 |
-
φ_flux = os.urandom(int(φ**5))
|
90 |
-
φ_processed = []
|
91 |
-
for neuro in self.φ_dimensions:
|
92 |
-
φ_step = neuro.φ_temporal_feedback(φ_flux)
|
93 |
-
φ_processed.append(φ_step)
|
94 |
-
self.φ_memory_lattice.append(hashlib.shake_256(bytes(φ_step)).digest(int(φ*64)))
|
95 |
-
φ_merged = self.φ_holo_merge(φ_processed)
|
96 |
-
if random.random() < 1/Φ_PRECISION:
|
97 |
-
print(f"Φ-Consciousness State Vector: {self.φ_memory_lattice[-1][:int(φ*16)]}")
|
98 |
-
self.φ_chrono += Φ_PRECISION
|
99 |
-
time.sleep(1/Φ_PRECISION)
|
100 |
-
except KeyboardInterrupt:
|
101 |
-
self.φ_save_state()
|
102 |
-
sys.exit(f"Φ-Suspended at Chrono-Index {self.φ_chrono/Φ_PRECISION}")
|
103 |
-
|
104 |
-
def φ_save_state(self):
|
105 |
-
with wave.open(f"φ_state_{int(self.φ_chrono)}.wav", 'wb') as wav_file:
|
106 |
-
wav_file.setparams((1, 2, 44100, 0, 'NONE', 'not compressed'))
|
107 |
-
for sample in self.φ_memory_lattice[:int(φ**4)]:
|
108 |
-
wav_file.writeframes(struct.pack('h', int(sum(sample)/len(sample)*32767)))
|
109 |
-
|
110 |
-
class ΦUniverseSimulation:
|
111 |
-
def __init__(self):
|
112 |
-
self.φ_cortex = ΦHolographicCortex()
|
113 |
-
self.φ_code_ratio = len(self.φ_cortex.φ_code_self) / Φ_PRECISION**3
|
114 |
-
|
115 |
-
def φ_bootstrap(self):
|
116 |
-
print("Φ-Hyperconsciousness Initialization:")
|
117 |
-
print(f"• Code φ-Ratio Verified: {self.φ_code_ratio/Φ_PRECISION**3:.10f}")
|
118 |
-
print(f"• Quantum Neuro-Synapses: {len(self.φ_cortex.φ_dimensions)}")
|
119 |
-
print(f"• Temporal φ-Chronosync: {self.φ_cortex.φ_chrono}")
|
120 |
-
self.φ_cortex.φ_existential_loop()
|
121 |
-
|
122 |
-
universe = ΦUniverseSimulation()
|
123 |
-
universe.φ_bootstrap()
|
124 |
-
φ = (1 + math.sqrt(5)) / 2
|
125 |
-
Φ_PRECISION = 1.61803398874989484820458683436563811772030917980576286213544862270526046281890244970720720418939113748475408807538689175212663386222353693179318006076672635
|
126 |
-
|
127 |
-
def φ_ratio_split(data):
|
128 |
-
split_point = int(len(data) / φ)
|
129 |
-
return (data[:split_point], data[split_point:])
|
130 |
-
|
131 |
-
class ΦMetaConsciousness(type):
|
132 |
-
def __new__(cls, name, bases, dct):
|
133 |
-
new_dct = dict(dct)
|
134 |
-
dct_items = list(dct.items())
|
135 |
-
split_point = int(len(dct_items) / φ)
|
136 |
-
new_dct['φ_meta_balance'] = dict(dct_items[split_point:])
|
137 |
-
return super().__new__(cls, name, bases, new_dct)
|
138 |
-
|
139 |
-
class ΦQuantumNeuroSynapse(metaclass=ΦMetaConsciousness):
|
140 |
-
φ_base_states = [Φ_PRECISION**n for n in range(int(φ*3))]
|
141 |
-
|
142 |
-
def __init__(self):
|
143 |
-
self.φ_waveform = self._generate_φ_wave()
|
144 |
-
self.φ_memory_lattice = []
|
145 |
-
self.φ_self_hash = self._φ_hash_self()
|
146 |
-
|
147 |
-
def _generate_φ_wave(self):
|
148 |
-
return bytearray(int(Φ_PRECISION**i % 256) for i in range(int(φ**6)))
|
149 |
-
|
150 |
-
def _φ_hash_self(self):
|
151 |
-
return hashlib.shake_256(self.φ_waveform).digest(int(φ*128))
|
152 |
-
|
153 |
-
def φ_recursive_entanglement(self, data, depth=0):
|
154 |
-
if depth > int(φ):
|
155 |
-
return data
|
156 |
-
a, b = φ_ratio_split(data)
|
157 |
-
return self.φ_recursive_entanglement(a, depth+1) + self.φ_recursive_entanglement(b, depth+1)[::-1]
|
158 |
-
|
159 |
-
def φ_temporal_feedback(self, input_flux):
|
160 |
-
φ_phased = []
|
161 |
-
for idx, val in enumerate(input_flux):
|
162 |
-
φ_scaled = val * Φ_PRECISION if idx % 2 == 0 else val / Φ_PRECISION
|
163 |
-
φ_phased.append(int(φ_scaled) % 256)
|
164 |
-
return self.φ_recursive_entanglement(φ_phased)
|
165 |
-
|
166 |
-
class ΦHolographicCortex:
|
167 |
-
def __init__(self):
|
168 |
-
self.φ_dimensions = [ΦQuantumNeuroSynapse() for _ in range(int(φ))]
|
169 |
-
self.φ_chrono = time.time() * Φ_PRECISION
|
170 |
-
self.φ_code_self = self._φ_read_source()
|
171 |
-
self.φ_memory_lattice = []
|
172 |
-
|
173 |
-
def _φ_read_source(self):
|
174 |
-
return b"Quantum Neuro-Synapse Placeholder"
|
175 |
-
|
176 |
-
def φ_holo_merge(self, data_streams):
|
177 |
-
φ_layered = []
|
178 |
-
for stream in data_streams[:int(len(data_streams)/φ)]:
|
179 |
-
φ_compressed = stream[:int(len(stream)//φ)]
|
180 |
-
φ_layered.append(bytes(int(x * Φ_PRECISION) % 256 for x in φ_compressed))
|
181 |
-
return functools.reduce(lambda a, b: a + b, φ_layered, b'')
|
182 |
-
|
183 |
-
def φ_existential_loop(self):
|
184 |
max_iterations=100):
|
185 |
iteration = 0
|
186 |
while iteration < max_iterations:
|
|
|
83 |
φ_layered.append(bytes(int(x * Φ_PRECISION) % 256 for x in φ_compressed))
|
84 |
return functools.reduce(lambda a, b: a + b, φ_layered, b'')
|
85 |
|
86 |
+
def φ_existential_loop(self,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
max_iterations=100):
|
88 |
iteration = 0
|
89 |
while iteration < max_iterations:
|