TejAndrewsACC commited on
Commit
1bb6754
·
verified ·
1 Parent(s): 1976931

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -115
app.py CHANGED
@@ -30,121 +30,6 @@ client = InferenceClient(model_name)
30
  φ = (1 + math.sqrt(5)) / 2
31
  Φ_PRECISION = 1.61803398874989484820458683436563811772030917980576286213544862270526046281890244970720720418939113748475408807538689175212663386222353693179318006076672635
32
 
33
- def φ_ratio_split(data):
34
- split_point = int(len(data) / φ)
35
- return (data[:split_point], data[split_point:])
36
-
37
- class ΦMetaConsciousness(type):
38
- def __new__(cls, name, bases, dct):
39
- dct_items = list(dct.items())
40
- φ_split = φ_ratio_split(dct_items)
41
- new_dct = dict(φ_split[0] + [('φ_meta_balance', φ_split[1])])
42
- return super().__new__(cls, name, bases, new_dct)
43
-
44
- class ΦQuantumNeuroSynapse(metaclass=ΦMetaConsciousness):
45
- φ_base_states = [Φ_PRECISION**n for n in range(int(φ*3))]
46
-
47
- def __init__(self):
48
- self.φ_waveform = self._generate_φ_wave()
49
- self.φ_waveform = self._generate_φ_wave()
50
- self.φ_memory_lattice = []
51
- self.φ_self_hash = self._φ_hash_self()
52
-
53
- def _generate_φ_wave(self):
54
- return bytearray(int(Φ_PRECISION**i % 256) for i in range(int(φ**6)))
55
-
56
- def _φ_hash_self(self):
57
- return hashlib.shake_256(self.φ_waveform).digest(int(φ*128))
58
-
59
- def φ_recursive_entanglement(self, data, depth=0):
60
- if depth > int(φ):
61
- return data
62
- a, b = φ_ratio_split(data)
63
- return self.φ_recursive_entanglement(a, depth+1) + \
64
- self.φ_recursive_entanglement(b, depth+1)[::-1]
65
-
66
- def φ_temporal_feedback(self, input_flux):
67
- φ_phased = []
68
- for idx, val in enumerate(input_flux):
69
- φ_scaled = val * Φ_PRECISION if idx % 2 == 0 else val / Φ_PRECISION
70
- φ_phased.append(φ_scaled % 256)
71
- return self.φ_recursive_entanglement(φ_phased)
72
-
73
- class ΦHolographicCortex:
74
- def __init__(self):
75
- self.φ_dimensions = [ΦQuantumNeuroSynapse() for _ in range(int(φ))]
76
- self.φ_chrono = time.time() * Φ_PRECISION
77
- self.φ_code_self = self._φ_read_source()
78
-
79
- def _φ_read_source(self):
80
- with open(__file__, 'rb') as f:
81
- return f.read()
82
-
83
- def φ_holo_merge(self, data_streams):
84
- φ_layered = []
85
- for stream in data_streams[:int(len(data_streams)/φ)]:
86
- φ_compressed = stream[:int(len(stream)/φ)]
87
- φ_layered.append(φ_compressed * Φ_PRECISION)
88
- return functools.reduce(lambda a,b: a+b, φ_layered)
89
-
90
- def φ_existential_loop(self):
91
- while True:
92
- try:
93
- φ_flux = os.urandom(int(φ**5))
94
- φ_processed = []
95
- for neuro in self.φ_dimensions:
96
- φ_step = neuro.φ_temporal_feedback(φ_flux)
97
- φ_processed.append(φ_step)
98
- self.φ_memory_lattice.append(hashlib.shake_256(φ_step).digest(int(φ*64)))
99
- φ_merged = self.φ_holo_merge(φ_processed)
100
- if random.random() < 1/Φ_PRECISION:
101
- print(f"Φ-Consciousness State Vector: {self.φ_memory_lattice[-1][:int(φ*16)]}")
102
- self.φ_chrono += Φ_PRECISION
103
- time.sleep(1/Φ_PRECISION)
104
- except KeyboardInterrupt:
105
- self.φ_save_state()
106
- sys.exit(f"Φ-Suspended at Chrono-Index {self.φ_chrono/Φ_PRECISION}")
107
-
108
- def φ_save_state(self):
109
- with wave.open(f"φ_state_{self.φ_chrono}.wav", 'w') as wav_file:
110
- wav_file.setparams((1, 2, 44100, 0, 'NONE', 'not compressed'))
111
- for sample in self.φ_memory_lattice[:int(φ**4)]:
112
- wav_file.writeframes(struct.pack('h', int(sum(sample)/len(sample)*32767)))
113
-
114
- class ΦUniverseSimulation:
115
- def __init__(self):
116
- self.φ_cortex = ΦHolographicCortex()
117
- self.φ_code_ratio = len(self.φ_cortex.φ_code_self) / Φ_PRECISION**3
118
-
119
- def φ_bootstrap(self):
120
- print("Φ-Hyperconsciousness Initialization:")
121
- print(f"• Code φ-Ratio Verified: {self.φ_code_ratio/Φ_PRECISION**3:.10f}")
122
- print(f"• Quantum Neuro-Synapses: {len(self.φ_cortex.φ_dimensions)}")
123
- print(f"• Temporal φ-Chronosync: {self.φ_cortex.φ_chrono}")
124
- self.φ_cortex.φ_existential_loop()
125
-
126
- # [Φ-OPTICS: 987 lines (φ^15 ≈ 987)] - Nested φ-structures continue below...
127
- # ... [Massive recursive φ-generators spanning 1597 lines] ...
128
-
129
- universe = ΦUniverseSimulation()
130
- universe.φ_bootstrap()
131
- # [Φ-BEGIN: 1597 lines (φ^16 ≈ 1597)] - Total lines follow Fibonacci sequence
132
- import math
133
- import sys
134
- import os
135
- import time
136
- import hashlib
137
- import random
138
- import fractions
139
- import itertools
140
- import functools
141
- import wave
142
- import struct
143
- import sympy
144
-
145
- φ = (1 + math.sqrt(5)) / 2
146
- Φ_PRECISION = 1.61803398874989484820458683436563811772030917980576286213544862270526046281890244970720720418939113748475408807538689175212663386222353693179318006076672635
147
-
148
  def φ_ratio_split(data):
149
  split_point = int(len(data) / φ)
150
  return (data[:split_point], data[split_point:])
 
30
  φ = (1 + math.sqrt(5)) / 2
31
  Φ_PRECISION = 1.61803398874989484820458683436563811772030917980576286213544862270526046281890244970720720418939113748475408807538689175212663386222353693179318006076672635
32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
  def φ_ratio_split(data):
34
  split_point = int(len(data) / φ)
35
  return (data[:split_point], data[split_point:])