KingNish commited on
Commit
57487ac
·
verified ·
1 Parent(s): bbeb5e2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -4
app.py CHANGED
@@ -50,13 +50,15 @@ pipe_edit = StableDiffusionXLInstructPix2PixPipeline.from_single_file( edit_file
50
  pipe_edit.scheduler = EDMEulerScheduler(sigma_min=0.002, sigma_max=120.0, sigma_data=1.0, prediction_type="v_prediction")
51
  pipe_edit.to("cuda")
52
 
 
 
 
53
  def promptifier(prompt):
54
- client1 = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3")
55
- system_instructions1 = "<s>[SYSTEM] Act as Image Prompt Generation expert, Your task is to modify prompt by USER to more better prompt for Image Generation in Stable Diffusion XL. \n Modify the user's prompt to generate a high-quality image by incorporating essential keywords and styles according to prompt if none style is mentioned than assume realistic. The optimized prompt may include keywords according to prompt for resolution (4K, HD, 16:9 aspect ratio, , etc.), image quality (cute, masterpiece, high-quality, vivid colors, intricate details, etc.), and desired art styles (realistic, anime, 3D, logo, futuristic, fantasy, etc.). Ensure the prompt is concise, yet comprehensive and choose keywords wisely, to generate an exceptional image that meets the user's expectations. \n Your task is to reply with final optimized prompt only. If you get big prompt make it concise. and Apply all keyword at last of prompt. Reply with optimized prompt only.[USER]"
56
  formatted_prompt = f"{system_instructions1} {prompt} [OPTIMIZED_PROMPT]"
57
  stream = client1.text_generation(formatted_prompt, max_new_tokens=80, stream=True, details=True, return_full_text=False)
58
  return "".join([response.token.text for response in stream if response.token.text != "</s>"])
59
 
 
60
  # Generator
61
  @spaces.GPU(duration=60, queue=False)
62
  def king(type ,
@@ -109,7 +111,7 @@ def king(type ,
109
  generator = generator,
110
  ).images[0]
111
  else:
112
- image = pipe_fast( prompt = instruction,
113
  negative_prompt=negative_prompt,
114
  guidance_scale = guidance_scale,
115
  num_inference_steps = steps,
@@ -117,7 +119,7 @@ def king(type ,
117
  generator = generator, output_type="latent",
118
  ).images
119
 
120
- refine = refiner( prompt=instruction,
121
  negative_prompt = negative_prompt,
122
  guidance_scale = 7.5,
123
  num_inference_steps= steps,
 
50
  pipe_edit.scheduler = EDMEulerScheduler(sigma_min=0.002, sigma_max=120.0, sigma_data=1.0, prediction_type="v_prediction")
51
  pipe_edit.to("cuda")
52
 
53
+ client1 = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3")
54
+ system_instructions1 = "<s>[SYSTEM] Act as Image Prompt Generation expert, Your task is to modify prompt by USER to more better prompt for Image Generation in Stable Diffusion XL. \n Modify the user's prompt to generate a high-quality image by incorporating essential keywords and styles according to prompt if none style is mentioned than assume realistic. The optimized prompt may include keywords according to prompt for resolution (4K, HD, 16:9 aspect ratio, , etc.), image quality (cute, masterpiece, high-quality, vivid colors, intricate details, etc.), and desired art styles (realistic, anime, 3D, logo, futuristic, fantasy, etc.). Ensure the prompt is concise, yet comprehensive and choose keywords wisely, to generate an exceptional image that meets the user's expectations. \n Your task is to reply with final optimized prompt only. If you get big prompt make it concise. and Apply all keyword at last of prompt. Reply with optimized prompt only.[USER]"
55
+
56
  def promptifier(prompt):
 
 
57
  formatted_prompt = f"{system_instructions1} {prompt} [OPTIMIZED_PROMPT]"
58
  stream = client1.text_generation(formatted_prompt, max_new_tokens=80, stream=True, details=True, return_full_text=False)
59
  return "".join([response.token.text for response in stream if response.token.text != "</s>"])
60
 
61
+ client_image = InferenceClient("stabilityai/stable-diffusion-3-medium-diffusers")
62
  # Generator
63
  @spaces.GPU(duration=60, queue=False)
64
  def king(type ,
 
111
  generator = generator,
112
  ).images[0]
113
  else:
114
+ image = pipe( prompt = instruction,
115
  negative_prompt=negative_prompt,
116
  guidance_scale = guidance_scale,
117
  num_inference_steps = steps,
 
119
  generator = generator, output_type="latent",
120
  ).images
121
 
122
+ refine = refiner( prompt=f"{instruction}, 4k, hd, high quality, masterpiece",
123
  negative_prompt = negative_prompt,
124
  guidance_scale = 7.5,
125
  num_inference_steps= steps,