Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -10,7 +10,6 @@ from diffusers import DiffusionPipeline, StableDiffusionXLPipeline, EDMEulerSche
|
|
10 |
from custom_pipeline import CosStableDiffusionXLInstructPix2PixPipeline
|
11 |
from huggingface_hub import hf_hub_download
|
12 |
from huggingface_hub import InferenceClient
|
13 |
-
from diffusers import StableDiffusion3Pipeline, SD3Transformer2DModel, FlowMatchEulerDiscreteScheduler
|
14 |
|
15 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
16 |
dtype = torch.float16
|
@@ -32,30 +31,11 @@ To optimize image results:
|
|
32 |
- Experiment with different **random seeds** and **CFG values** for varied outcomes.
|
33 |
- **Rephrase your instructions** for potentially better results.
|
34 |
- **Increase the number of steps** for enhanced edits.
|
35 |
-
"""
|
36 |
-
|
37 |
-
def set_timesteps_patched(self, num_inference_steps: int, device = None):
|
38 |
-
self.num_inference_steps = num_inference_steps
|
39 |
-
|
40 |
-
ramp = np.linspace(0, 1, self.num_inference_steps)
|
41 |
-
sigmas = torch.linspace(math.log(self.config.sigma_min), math.log(self.config.sigma_max), len(ramp)).exp().flip(0)
|
42 |
-
|
43 |
-
sigmas = (sigmas).to(dtype=torch.float32, device=device)
|
44 |
-
self.timesteps = self.precondition_noise(sigmas)
|
45 |
-
|
46 |
-
self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])
|
47 |
-
self._step_index = None
|
48 |
-
self._begin_index = None
|
49 |
-
self.sigmas = self.sigmas.to("cpu")
|
50 |
|
51 |
# Image Editor
|
52 |
-
|
53 |
-
|
54 |
-
pipe_edit = StableDiffusionXLInstructPix2PixPipeline.from_single_file(
|
55 |
-
edit_file, num_in_channels=8, is_cosxl_edit=True, vae=vae, torch_dtype=torch.float16,
|
56 |
-
)
|
57 |
-
pipe_edit.scheduler = EDMEulerScheduler(sigma_min=0.002, sigma_max=120.0, sigma_data=1.0, prediction_type="v_prediction")
|
58 |
-
pipe_edit.to("cuda")
|
59 |
|
60 |
# Generator
|
61 |
@spaces.GPU(duration=30, queue=False)
|
@@ -66,7 +46,7 @@ def king(type ,
|
|
66 |
randomize_seed: bool = False,
|
67 |
seed: int = 25,
|
68 |
text_cfg_scale: float = 7.3,
|
69 |
-
image_cfg_scale: float = 1.
|
70 |
width: int = 1024,
|
71 |
height: int = 1024,
|
72 |
guidance_scale: float = 6,
|
@@ -193,7 +173,7 @@ with gr.Blocks(css=css) as demo:
|
|
193 |
|
194 |
with gr.Row():
|
195 |
text_cfg_scale = gr.Number(value=7.3, step=0.1, label="Text CFG", interactive=True)
|
196 |
-
image_cfg_scale = gr.Number(value=1.
|
197 |
guidance_scale = gr.Number(value=6.0, step=0.1, label="Image Generation Guidance Scale", interactive=True)
|
198 |
steps = gr.Number(value=25, step=1, label="Steps", interactive=True)
|
199 |
randomize_seed = gr.Radio(
|
|
|
10 |
from custom_pipeline import CosStableDiffusionXLInstructPix2PixPipeline
|
11 |
from huggingface_hub import hf_hub_download
|
12 |
from huggingface_hub import InferenceClient
|
|
|
13 |
|
14 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
15 |
dtype = torch.float16
|
|
|
31 |
- Experiment with different **random seeds** and **CFG values** for varied outcomes.
|
32 |
- **Rephrase your instructions** for potentially better results.
|
33 |
- **Increase the number of steps** for enhanced edits.
|
34 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
# Image Editor
|
37 |
+
pipe_edit = StableDiffusionInstructPix2PixPipeline.from_pretrained( "vinesmsuic/magicbrush-jul7", torch_dtype=torch.float16, vae=vae ).to("cuda")
|
38 |
+
pipe_edit.scheduler = EulerAncestralDiscreteScheduler(pipe_edit.scheduler.config)
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
# Generator
|
41 |
@spaces.GPU(duration=30, queue=False)
|
|
|
46 |
randomize_seed: bool = False,
|
47 |
seed: int = 25,
|
48 |
text_cfg_scale: float = 7.3,
|
49 |
+
image_cfg_scale: float = 1.5,
|
50 |
width: int = 1024,
|
51 |
height: int = 1024,
|
52 |
guidance_scale: float = 6,
|
|
|
173 |
|
174 |
with gr.Row():
|
175 |
text_cfg_scale = gr.Number(value=7.3, step=0.1, label="Text CFG", interactive=True)
|
176 |
+
image_cfg_scale = gr.Number(value=1.5, step=0.1,label="Image CFG", interactive=True)
|
177 |
guidance_scale = gr.Number(value=6.0, step=0.1, label="Image Generation Guidance Scale", interactive=True)
|
178 |
steps = gr.Number(value=25, step=1, label="Steps", interactive=True)
|
179 |
randomize_seed = gr.Radio(
|