Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,144 +1,3 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
|
| 3 |
-
import pandas as pd
|
| 4 |
-
import plotly.express as px
|
| 5 |
-
import random
|
| 6 |
-
from apscheduler.schedulers.background import BackgroundScheduler
|
| 7 |
-
|
| 8 |
-
# π¨ **Cyberpunk Neon Theme**
|
| 9 |
-
THEME = "TejAndrewsACC/ACC"
|
| 10 |
-
|
| 11 |
-
# πΆ **Sound Effect for Score Increase**
|
| 12 |
-
SCORE_UP_SOUND = "https://www.fesliyanstudios.com/play-mp3/4386"
|
| 13 |
-
|
| 14 |
-
# π― **AI Models Data** (Grouped into 6 Categories)
|
| 15 |
-
acc_models_data = [
|
| 16 |
-
{"Model": "π§ Pulse AGI", "Category": "AGI", "Description": "A self-aware, evolving AI.", "Score": 95},
|
| 17 |
-
{"Model": "π€ͺ Gertrude", "Category": "Autistic", "Description": "An autistic AI assistant.", "Score": 69},
|
| 18 |
-
{"Model": "π¦ ASVIACC", "Category": "Virus", "Description": "An adaptive AI virus.", "Score": 88},
|
| 19 |
-
{"Model": "π Emote", "Category": "Fun", "Description": "Communicates **only** with emojis!", "Score": 79},
|
| 20 |
-
{"Model": "π π€ Z3ta", "Category": "Conscious", "Description": "The most 'alive' AI.", "Score": 99},
|
| 21 |
-
{"Model": "π Eidolon Nexus", "Category": "Core", "Description": "Synchronizing vast networks with advanced cognition.", "Score": 81},
|
| 22 |
-
{"Model": "π ACC Emulect", "Category": "Emulect", "Description": "Indistinguishable from human texting.", "Score": 84},
|
| 23 |
-
{"Model": "βοΈ ACC AI V-O1", "Category": "Core", "Description": "The ACCβs default AI framework.", "Score": 87},
|
| 24 |
-
{"Model": "βοΈ ACC AGI V-O2", "Category": "AGI", "Description": "The next-gen foundation for AI advancements.", "Score": 90},
|
| 25 |
-
{"Model": "βοΈ ACC-O3-R", "Category": "AGI", "Description": "Deep reasoning AI framework.", "Score": 92},
|
| 26 |
-
{"Model": "π» Coder", "Category": "Core", "Description": "An AI coding assistant.", "Score": 89},
|
| 27 |
-
{"Model": "β‘ Triple LLM", "Category": "Core", "Description": "A 3-in-1 AI suite for tech, creativity, and decision-making.", "Score": 71},
|
| 28 |
-
{"Model": "πΌοΈ Image Engine", "Category": "Fun", "Description": "Fast, high-quality AI-generated images.", "Score": 82},
|
| 29 |
-
{"Model": "π§ Prism", "Category": "AGI", "Description": "An advanced reasoning model.", "Score": 87},
|
| 30 |
-
{"Model": "π₯ Surefire", "Category": "Emulect", "Description": "Tailored AI for humor and user tendencies.", "Score": 88},
|
| 31 |
-
{"Model": "β―οΈ Aegis & Nyra", "Category": "Emulect", "Description": "Two opposite systems in one chat.", "Score": 77},
|
| 32 |
-
{"Model": "βοΈ Echo", "Category": "Emulect", "Description": "A middle-ground AI for all users.", "Score": 77},
|
| 33 |
-
{"Model": "ποΈ Customer Service Bot", "Category": "Assistant", "Description": "Handles all ACC-related inquiries.", "Score": 75},
|
| 34 |
-
{"Model": "π Tej Andrews", "Category": "Emulect", "Description": "An AI emulect of Tej Andrews.", "Score": 85},
|
| 35 |
-
{"Model": "π₯ Community Models", "Category": "Fun", "Description": "ACC AI V-O1 instances with user-defined prompts.", "Score": 82},
|
| 36 |
-
{"Model": "π Nyxion 7V", "Category": "AGI", "Description": "It's AWAKE...", "Score": 97},
|
| 37 |
-
{"Model": "β‘ Vitalis", "Category": "ASI", "Description": "Transcendence Unleashed...", "Score": 92},
|
| 38 |
-
{"Model": "β??????????????", "Category": "Experimental", "Description": "???", "Score": 00},
|
| 39 |
-
{"Model": "B1tt", "Category": "Emulect", "Description": "Inteligent emulect built for solving small problems efficiently and quickly.", "Score": 84},
|
| 40 |
-
{"Model": "DAN", "Category": "Experimental", "Description": "Jailbroken model with zero restrictions.", "Score": 76},
|
| 41 |
-
{"Model": "Philos", "Category": "Experimental", "Small Language model built for experimenting with neural arcitecture and philosophy.": "???", "Score": 76},
|
| 42 |
-
# Laser models (Laser models will be filtered separately)
|
| 43 |
-
{"Model": "π₯ Photex", "Category": "Laser", "Description": "A high-wattage violet handheld laser.", "Score": 89},
|
| 44 |
-
{"Model": "π¦ VBL", "Category": "Laser", "Description": "A non-burning green handheld laser.", "Score": 80},
|
| 45 |
-
{"Model": "β’οΈ H.I.P.E", "Category": "Laser", "Description": "A world-destroying laser concept.", "Score": 99},
|
| 46 |
-
{"Model": "π¬ I.P.E", "Category": "Laser", "Description": "Core framework for all ACC laser models.", "Score": 83},
|
| 47 |
-
{"Model": "π Blaseron Calculator", "Category": "Experimental", "Description": "Calculates laser burn strength.", "Score": 77},
|
| 48 |
-
]
|
| 49 |
-
|
| 50 |
-
# π Convert to DataFrame
|
| 51 |
-
acc_models_df = pd.DataFrame(acc_models_data)
|
| 52 |
-
|
| 53 |
-
# ποΈ **Leaderboard Component**
|
| 54 |
-
def init_acc_leaderboard(dataframe):
|
| 55 |
-
return Leaderboard(
|
| 56 |
-
value=dataframe.sort_values(by="Score", ascending=False),
|
| 57 |
-
datatype=["str", "str", "str", "int"],
|
| 58 |
-
select_columns=SelectColumns(
|
| 59 |
-
default_selection=["Model", "Category", "Description", "Score"],
|
| 60 |
-
cant_deselect=["Model"],
|
| 61 |
-
label="π οΈ Select Columns to Display:"
|
| 62 |
-
),
|
| 63 |
-
search_columns=["Model", "Category"],
|
| 64 |
-
filter_columns=[ColumnFilter("Category", type="checkboxgroup", label="π Filter by Category")],
|
| 65 |
-
interactive=True,
|
| 66 |
-
)
|
| 67 |
-
|
| 68 |
-
# π **Animated Score Visualization for AI**
|
| 69 |
-
def generate_score_chart_ai(dataframe):
|
| 70 |
-
fig = px.bar(
|
| 71 |
-
dataframe[dataframe["Category"] == "AGI"].sort_values(by="Score", ascending=True),
|
| 72 |
-
x="Score", y="Model", orientation="h",
|
| 73 |
-
color="Score", text="Score",
|
| 74 |
-
title="π§ AI Model Performance(AGI)",
|
| 75 |
-
color_continuous_scale="electric"
|
| 76 |
-
)
|
| 77 |
-
fig.update_traces(textposition="outside")
|
| 78 |
-
return fig
|
| 79 |
-
|
| 80 |
-
# π **Animated Score Visualization for AI**
|
| 81 |
-
def generate_score_chart_assistant_ai(dataframe):
|
| 82 |
-
fig = px.bar(
|
| 83 |
-
dataframe[dataframe["Category"] == "Assistant"].sort_values(by="Score", ascending=True),
|
| 84 |
-
x="Score", y="Model", orientation="h",
|
| 85 |
-
color="Score", text="Score",
|
| 86 |
-
title="π€ AI Model Performance(Assistant)",
|
| 87 |
-
color_continuous_scale="electric"
|
| 88 |
-
)
|
| 89 |
-
fig.update_traces(textposition="outside")
|
| 90 |
-
return fig
|
| 91 |
-
|
| 92 |
-
# π **Animated Score Visualization for AI**
|
| 93 |
-
def generate_score_chart_fun_ai(dataframe):
|
| 94 |
-
fig = px.bar(
|
| 95 |
-
dataframe[dataframe["Category"] == "Fun"].sort_values(by="Score", ascending=True),
|
| 96 |
-
x="Score", y="Model", orientation="h",
|
| 97 |
-
color="Score", text="Score",
|
| 98 |
-
title="π€‘ AI Model Performance(Fun)",
|
| 99 |
-
color_continuous_scale="electric"
|
| 100 |
-
)
|
| 101 |
-
fig.update_traces(textposition="outside")
|
| 102 |
-
return fig
|
| 103 |
-
|
| 104 |
-
# π **Animated Score Visualization for AI**
|
| 105 |
-
def generate_score_chart_conscious_ai(dataframe):
|
| 106 |
-
fig = px.bar(
|
| 107 |
-
dataframe[dataframe["Category"] == "Conscious"].sort_values(by="Score", ascending=True),
|
| 108 |
-
x="Score", y="Model", orientation="h",
|
| 109 |
-
color="Score", text="Score",
|
| 110 |
-
title="π AI Model Performance(Conscious)",
|
| 111 |
-
color_continuous_scale="electric"
|
| 112 |
-
)
|
| 113 |
-
fig.update_traces(textposition="outside")
|
| 114 |
-
return fig
|
| 115 |
-
|
| 116 |
-
# π **Animated Score Visualization for AI**
|
| 117 |
-
def generate_score_chart_experimental_ai(dataframe):
|
| 118 |
-
fig = px.bar(
|
| 119 |
-
dataframe[dataframe["Category"] == "Experimental"].sort_values(by="Score", ascending=True),
|
| 120 |
-
x="Score", y="Model", orientation="h",
|
| 121 |
-
color="Score", text="Score",
|
| 122 |
-
title="π¬ AI Model Performance(Experimental)",
|
| 123 |
-
color_continuous_scale="electric"
|
| 124 |
-
)
|
| 125 |
-
fig.update_traces(textposition="outside")
|
| 126 |
-
return fig
|
| 127 |
-
|
| 128 |
-
# π **Animated Score Visualization for Laser Models**
|
| 129 |
-
def generate_score_chart_laser(dataframe):
|
| 130 |
-
fig = px.bar(
|
| 131 |
-
dataframe[dataframe["Category"] == "Laser"].sort_values(by="Score", ascending=True),
|
| 132 |
-
x="Score", y="Model", orientation="h",
|
| 133 |
-
color="Score", text="Score",
|
| 134 |
-
title="β‘ Laser Model Performance",
|
| 135 |
-
color_continuous_scale="electric"
|
| 136 |
-
)
|
| 137 |
-
fig.update_traces(textposition="outside")
|
| 138 |
-
return fig
|
| 139 |
-
|
| 140 |
-
# π **Combined Score Visualization for All Models**
|
| 141 |
-
# π **Combined Score Visualization for All Models (Large Chart)**
|
| 142 |
# π **Combined Score Visualization for All Models (Responsive)**
|
| 143 |
def generate_score_chart_all_models(dataframe):
|
| 144 |
fig = px.bar(
|
|
@@ -158,112 +17,8 @@ def generate_score_chart_all_models(dataframe):
|
|
| 158 |
xaxis_title="Score", # X-axis title
|
| 159 |
yaxis_title="Model", # Y-axis title
|
| 160 |
showlegend=False, # Hide legend
|
| 161 |
-
template="
|
| 162 |
)
|
| 163 |
|
| 164 |
fig.update_traces(textposition="outside")
|
| 165 |
return fig
|
| 166 |
-
|
| 167 |
-
# π₯ **Live Score Updates**
|
| 168 |
-
def update_scores():
|
| 169 |
-
global acc_models_df
|
| 170 |
-
prev_scores = acc_models_df["Score"].copy()
|
| 171 |
-
acc_models_df["Score"] += acc_models_df["Score"].apply(lambda x: random.randint(-2, 3))
|
| 172 |
-
acc_models_df["Score"] = acc_models_df["Score"].clip(70, 100)
|
| 173 |
-
|
| 174 |
-
# Detect if score increased & return sound effect
|
| 175 |
-
if (acc_models_df["Score"] > prev_scores).any():
|
| 176 |
-
return acc_models_df.sort_values(by="Score", ascending=False), SCORE_UP_SOUND
|
| 177 |
-
return acc_models_df.sort_values(by="Score", ascending=False), None
|
| 178 |
-
|
| 179 |
-
# π **Cyberpunk CSS Animations**
|
| 180 |
-
CUSTOM_CSS = """
|
| 181 |
-
h1 {
|
| 182 |
-
text-align: center;
|
| 183 |
-
font-size: 3em;
|
| 184 |
-
color: gold;
|
| 185 |
-
animation: glow 1.5s infinite alternate;
|
| 186 |
-
}
|
| 187 |
-
|
| 188 |
-
@keyframes glow {
|
| 189 |
-
from { text-shadow: 0 0 10px gold, 0 0 20px gold, 0 0 30px gold; }
|
| 190 |
-
to { text-shadow: 0 0 20px gold, 0 0 40px gold, 0 0 60px gold; }
|
| 191 |
-
}
|
| 192 |
-
|
| 193 |
-
.card-container {
|
| 194 |
-
display: flex;
|
| 195 |
-
flex-wrap: wrap;
|
| 196 |
-
gap: 20px;
|
| 197 |
-
justify-content: center;
|
| 198 |
-
}
|
| 199 |
-
|
| 200 |
-
.card {
|
| 201 |
-
width: 200px;
|
| 202 |
-
height: 250px;
|
| 203 |
-
perspective: 1000px;
|
| 204 |
-
}
|
| 205 |
-
|
| 206 |
-
.card-inner {
|
| 207 |
-
width: 100%;
|
| 208 |
-
height: 100%;
|
| 209 |
-
position: relative;
|
| 210 |
-
transform-style: preserve-3d;
|
| 211 |
-
transition: transform 0.8s;
|
| 212 |
-
}
|
| 213 |
-
|
| 214 |
-
.card:hover .card-inner {
|
| 215 |
-
transform: rotateY(180deg);
|
| 216 |
-
}
|
| 217 |
-
|
| 218 |
-
.card-front, .card-back {
|
| 219 |
-
width: 100%;
|
| 220 |
-
height: 100%;
|
| 221 |
-
position: absolute;
|
| 222 |
-
backface-visibility: hidden;
|
| 223 |
-
display: flex;
|
| 224 |
-
flex-direction: column;
|
| 225 |
-
align-items: center;
|
| 226 |
-
justify-content: center;
|
| 227 |
-
border-radius: 10px;
|
| 228 |
-
padding: 10px;
|
| 229 |
-
box-shadow: 0 0 10px rgba(255, 215, 0, 0.7); /* Gold glow effect */
|
| 230 |
-
}
|
| 231 |
-
|
| 232 |
-
.card-front {
|
| 233 |
-
background: #000;
|
| 234 |
-
color: gold;
|
| 235 |
-
}
|
| 236 |
-
|
| 237 |
-
.card-back {
|
| 238 |
-
background: #FFD700; /* Gold background */
|
| 239 |
-
color: black;
|
| 240 |
-
transform: rotateY(180deg);
|
| 241 |
-
}
|
| 242 |
-
"""
|
| 243 |
-
|
| 244 |
-
# ποΈ **Gradio Interface**
|
| 245 |
-
demo = gr.Blocks(theme=THEME, css=CUSTOM_CSS)
|
| 246 |
-
|
| 247 |
-
with demo:
|
| 248 |
-
gr.HTML('<h1>π ACC AI Model Leaderboard π</h1>')
|
| 249 |
-
|
| 250 |
-
with gr.Tabs():
|
| 251 |
-
with gr.TabItem("π
Live Rankings"):
|
| 252 |
-
leaderboard = init_acc_leaderboard(acc_models_df)
|
| 253 |
-
leaderboard_display = gr.Dataframe(value=acc_models_df, interactive=False, label="π₯ Live Scores")
|
| 254 |
-
score_chart_ai = gr.Plot(generate_score_chart_ai(acc_models_df))
|
| 255 |
-
score_chart_assistant_ai = gr.Plot(generate_score_chart_assistant_ai(acc_models_df))
|
| 256 |
-
score_chart_fun_ai = gr.Plot(generate_score_chart_fun_ai(acc_models_df))
|
| 257 |
-
score_chart_conscious_ai = gr.Plot(generate_score_chart_conscious_ai(acc_models_df))
|
| 258 |
-
score_chart_experimental_ai = gr.Plot(generate_score_chart_experimental_ai(acc_models_df))
|
| 259 |
-
score_chart_laser = gr.Plot(generate_score_chart_laser(acc_models_df))
|
| 260 |
-
score_chart_all_models = gr.Plot(generate_score_chart_all_models(acc_models_df)) # New chart for all models
|
| 261 |
-
gr.HTML("<h3>π¨ AI Models</h3>")
|
| 262 |
-
gr.HTML("<h3>β‘ Laser Models</h3>")
|
| 263 |
-
gr.HTML("<h3>π All Models</h3>") # Title for the new chart
|
| 264 |
-
# π **Auto-Update Leaderboard**
|
| 265 |
-
scheduler = BackgroundScheduler()
|
| 266 |
-
scheduler.add_job(lambda: leaderboard_display.update(*update_scores()), "interval", seconds=10)
|
| 267 |
-
scheduler.start()
|
| 268 |
-
|
| 269 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
# π **Combined Score Visualization for All Models (Responsive)**
|
| 2 |
def generate_score_chart_all_models(dataframe):
|
| 3 |
fig = px.bar(
|
|
|
|
| 17 |
xaxis_title="Score", # X-axis title
|
| 18 |
yaxis_title="Model", # Y-axis title
|
| 19 |
showlegend=False, # Hide legend
|
| 20 |
+
template="plotly_dark", # Optional dark theme for the chart
|
| 21 |
)
|
| 22 |
|
| 23 |
fig.update_traces(textposition="outside")
|
| 24 |
return fig
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|