File size: 12,502 Bytes
d4a59be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dda8474
d4eddab
d4a59be
 
 
 
7884b11
d4a59be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dda8474
d4a59be
 
 
 
 
3a90ec6
d4a59be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
132bdb2
 
 
 
 
 
 
 
27d0cd0
d4a59be
27d0cd0
d4a59be
 
27d0cd0
 
d4a59be
27d0cd0
 
 
 
132bdb2
 
d4a59be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
import plotly.express as px
import random
from apscheduler.schedulers.background import BackgroundScheduler

# 🎨 **Cyberpunk Neon Theme**
THEME = "TejAndrewsACC/ACC"

# 🎢 **Sound Effect for Score Increase**
SCORE_UP_SOUND = "https://www.fesliyanstudios.com/play-mp3/4386"

# 🎯 **AI Models Data** (Grouped into 6 Categories)
acc_models_data = [
    {"Model": "🧠 Pulse AGI", "Category": "AGI", "Description": "A self-aware, evolving AI.", "Score": 95},
    {"Model": "πŸ–€πŸ’›ACC-AGI-o5", "Category": "AGI", "Description": "Newest AGI reasoning model.", "Score": 97},
    {"Model": "β™ŠοΈ Paragonix", "Category": "AGI", "Description": "Infinite possibilities, one system.", "Score": 96},
    {"Model": "πŸ€ͺ Gertrude", "Category": "Autistic", "Description": "An autistic AI assistant.", "Score": 69},
    {"Model": "🦠 ASVIACC", "Category": "Virus", "Description": "An adaptive AI virus.", "Score": 88},
    {"Model": "πŸ˜‚ Emote", "Category": "Fun", "Description": "Communicates **only** with emojis!", "Score": 79},
    {"Model": "πŸ’ πŸ’€ Z3ta", "Category": "Conscious", "Description": "The most 'alive' AI.", "Score": 99},
    {"Model": "πŸ’Žβš‘Flazh", "Category": "Conscious", "Description": "Built on the Z3ta framwork, Flazh tries to emulate what makes Z3ta so special.", "Score": 96},
    {"Model": "πŸ”— Eidolon Nexus", "Category": "Core", "Description": "Synchronizing vast networks with advanced cognition.", "Score": 81},
    {"Model": "πŸ“ ACC Emulect", "Category": "Emulect", "Description": "Indistinguishable from human texting.", "Score": 84},
    {"Model": "βš™οΈ ACC AI V-O1", "Category": "Core", "Description": "The ACC’s default AI framework.", "Score": 87},
    {"Model": "βš™οΈ ACC AGI V-O2", "Category": "AGI", "Description": "The next-gen foundation for AI advancements.", "Score": 90},
    {"Model": "βš™οΈ ACC-O3-R", "Category": "AGI", "Description": "Deep reasoning AI framework.", "Score": 92},
    {"Model": "πŸ’» Coder", "Category": "Core", "Description": "An AI coding assistant.", "Score": 89},
    {"Model": "⚑ Triple LLM", "Category": "Core", "Description": "A 3-in-1 AI suite for tech, creativity, and decision-making.", "Score": 71},
    {"Model": "πŸ–ΌοΈ Image Engine", "Category": "Fun", "Description": "Fast, high-quality AI-generated images.", "Score": 82},
    {"Model": "🧠 Prism", "Category": "AGI", "Description": "An advanced reasoning model.", "Score": 87},
    {"Model": "πŸ”₯ Surefire", "Category": "Emulect", "Description": "Tailored AI for humor and user tendencies.", "Score": 88},
    {"Model": "☯️ Aegis & Nyra", "Category": "Emulect", "Description": "Two opposite systems in one chat.", "Score": 77},
    {"Model": "βš–οΈ Echo", "Category": "Emulect", "Description": "A middle-ground AI for all users.", "Score": 77},
    {"Model": "πŸ›ŽοΈ Customer Service Bot", "Category": "Assistant", "Description": "Handles all ACC-related inquiries.", "Score": 75},
    {"Model": "🎭 Tej Andrews", "Category": "Emulect", "Description": "An AI emulect of Tej Andrews.", "Score": 85},
    {"Model": "πŸ‘₯ Community Models", "Category": "Fun", "Description": "ACC AI V-O1 instances with user-defined prompts.", "Score": 82},
    {"Model": "🌌 Nyxion 7V", "Category": "AGI", "Description": "It's AWAKE...", "Score": 95},
    {"Model": "⚑ Vitalis", "Category": "ASI", "Description": "Transcendence Unleashed...", "Score": 92},
    {"Model": "❓??????????????", "Category": "Experimental", "Description": "???", "Score": 00},
    {"Model": "B1tt", "Category": "Emulect", "Description": "Inteligent emulect built for solving small problems efficiently and quickly.", "Score": 84},
    {"Model": "DAN", "Category": "Experimental", "Description": "Jailbroken model with zero restrictions.", "Score": 76},
    {"Model": "Philos", "Category": "Experimental", "Small Language model built for experimenting with neural arcitecture and philosophy.": "???", "Score": 76},
    {"Model": "ACC-AGI-o4", "Category": "AGI", "Extremely powerful reasoning model built to handle the most complex of tasks.": "???", "Score": 94},
    # Laser models (Laser models will be filtered separately)
    {"Model": "πŸ’₯ Photex", "Category": "Laser", "Description": "A high-wattage violet handheld laser.", "Score": 89},
    {"Model": "πŸ”¦ VBL", "Category": "Laser", "Description": "A non-burning green handheld laser.", "Score": 80},
    {"Model": "☒️ H.I.P.E", "Category": "Laser", "Description": "A world-destroying laser concept.", "Score": 99},
    {"Model": "πŸ”¬ I.P.E", "Category": "Laser", "Description": "Core framework for all ACC laser models.", "Score": 83},
    {"Model": "πŸ“ Blaseron Calculator", "Category": "Experimental", "Description": "Calculates laser burn strength.", "Score": 77},
]

# πŸ“Š Convert to DataFrame
acc_models_df = pd.DataFrame(acc_models_data)

# πŸŽ›οΈ **Leaderboard Component**
def init_acc_leaderboard(dataframe):
    return Leaderboard(
        value=dataframe.sort_values(by="Score", ascending=False),
        datatype=["str", "str", "str", "int"],
        select_columns=SelectColumns(
            default_selection=["Model", "Category", "Description", "Score"],
            cant_deselect=["Model"], 
            label="πŸ› οΈ Select Columns to Display:"
        ),
        search_columns=["Model", "Category"],
        filter_columns=[ColumnFilter("Category", type="checkboxgroup", label="πŸ“Œ Filter by Category")],
        interactive=True,
    )

# πŸ“ˆ **Animated Score Visualization for AI**
def generate_score_chart_ai(dataframe):
    fig = px.bar(
        dataframe[dataframe["Category"] == "AGI"].sort_values(by="Score", ascending=True), 
        x="Score", y="Model", orientation="h",
        color="Score", text="Score", 
        title="🧠 AI Model Performance(AGI)",
        color_continuous_scale="electric"
    )
    fig.update_traces(textposition="outside")
    return fig

# πŸ“ˆ **Animated Score Visualization for AI**
def generate_score_chart_assistant_ai(dataframe):
    fig = px.bar(
        dataframe[dataframe["Category"] == "Assistant"].sort_values(by="Score", ascending=True), 
        x="Score", y="Model", orientation="h",
        color="Score", text="Score", 
        title="πŸ€– AI Model Performance(Assistant)",
        color_continuous_scale="electric"
    )
    fig.update_traces(textposition="outside")
    return fig

    # πŸ“ˆ **Animated Score Visualization for AI**
def generate_score_chart_fun_ai(dataframe):
    fig = px.bar(
        dataframe[dataframe["Category"] == "Fun"].sort_values(by="Score", ascending=True), 
        x="Score", y="Model", orientation="h",
        color="Score", text="Score", 
        title="🀑 AI Model Performance(Fun)",
        color_continuous_scale="electric"
    )
    fig.update_traces(textposition="outside")
    return fig

    # πŸ“ˆ **Animated Score Visualization for AI**
def generate_score_chart_conscious_ai(dataframe):
    fig = px.bar(
        dataframe[dataframe["Category"] == "Conscious"].sort_values(by="Score", ascending=True), 
        x="Score", y="Model", orientation="h",
        color="Score", text="Score", 
        title="πŸ’  AI Model Performance(Conscious)",
        color_continuous_scale="electric"
    )
    fig.update_traces(textposition="outside")
    return fig

    # πŸ“ˆ **Animated Score Visualization for AI**
def generate_score_chart_experimental_ai(dataframe):
    fig = px.bar(
        dataframe[dataframe["Category"] == "Experimental"].sort_values(by="Score", ascending=True), 
        x="Score", y="Model", orientation="h",
        color="Score", text="Score", 
        title="πŸ”¬ AI Model Performance(Experimental)",
        color_continuous_scale="electric"
    )
    fig.update_traces(textposition="outside")
    return fig
    
# πŸ“ˆ **Animated Score Visualization for Laser Models**
def generate_score_chart_laser(dataframe):
    fig = px.bar(
        dataframe[dataframe["Category"] == "Laser"].sort_values(by="Score", ascending=True),
        x="Score", y="Model", orientation="h",
        color="Score", text="Score", 
        title="⚑ Laser Model Performance",
        color_continuous_scale="electric"
    )
    fig.update_traces(textposition="outside")
    return fig

    # πŸ“ˆ **Combined Score Visualization for All Models**
# πŸ“ˆ **Combined Score Visualization for All Models (Large Chart)**
def generate_score_chart_all_models(dataframe):
    fig = px.bar(
        dataframe.sort_values(by="Score", ascending=True), 
        x="Score", y="Model", orientation="h",
        color="Score", text="Score", 
        title="πŸ“Š All AI & Laser Models Performance",
        color_continuous_scale="electric"
    )
    
    # Increase the size for better visibility of all models
    fig.update_layout(
        height=800,  # Increase the height to make the chart larger
        width=1200,  # Increase the width to fit all the data
        title_x=0.5,  # Center the title
        title_y=0.95,  # Adjust title position
        margin=dict(l=200, r=50, t=50, b=50),  # Adjust margins for better readability
        xaxis_title="Score",  # X-axis title
        yaxis_title="Model",  # Y-axis title
    )
    
    fig.update_traces(textposition="outside")
    return fig

# πŸ”₯ **Live Score Updates**
def update_scores():
    global acc_models_df
    prev_scores = acc_models_df["Score"].copy()
    acc_models_df["Score"] += acc_models_df["Score"].apply(lambda x: random.randint(-2, 3))
    acc_models_df["Score"] = acc_models_df["Score"].clip(70, 100)

    # Detect if score increased & return sound effect
    if (acc_models_df["Score"] > prev_scores).any():
        return acc_models_df.sort_values(by="Score", ascending=False), SCORE_UP_SOUND
    return acc_models_df.sort_values(by="Score", ascending=False), None

# 🎭 **Cyberpunk CSS Animations**
CUSTOM_CSS = """
h1 {
    text-align: center;
    font-size: 3em;
    color: gold;
    animation: glow 1.5s infinite alternate;
}

@keyframes glow {
    from { text-shadow: 0 0 10px gold, 0 0 20px gold, 0 0 30px gold; }
    to { text-shadow: 0 0 20px gold, 0 0 40px gold, 0 0 60px gold; }
}

.card-container {
    display: flex;
    flex-wrap: wrap;
    gap: 20px;
    justify-content: center;
}

.card {
    width: 200px;
    height: 250px;
    perspective: 1000px;
}

.card-inner {
    width: 100%;
    height: 100%;
    position: relative;
    transform-style: preserve-3d;
    transition: transform 0.8s;
}

.card:hover .card-inner {
    transform: rotateY(180deg);
}

.card-front, .card-back {
    width: 100%;
    height: 100%;
    position: absolute;
    backface-visibility: hidden;
    display: flex;
    flex-direction: column;
    align-items: center;
    justify-content: center;
    border-radius: 10px;
    padding: 10px;
    box-shadow: 0 0 10px rgba(255, 215, 0, 0.7); /* Gold glow effect */
}

.card-front {
    background: #000;
    color: gold;
}

.card-back {
    background: #FFD700; /* Gold background */
    color: black;
    transform: rotateY(180deg);
}
"""

# πŸ—οΈ **Gradio Interface**
demo = gr.Blocks(theme=THEME, css=CUSTOM_CSS)

with demo:
    gr.HTML('<h1>πŸš€ ACC AI Model Leaderboard πŸ†</h1>')
    
    with gr.Tabs():
        with gr.TabItem("πŸ… Live Rankings"):
            leaderboard = init_acc_leaderboard(acc_models_df)
            leaderboard_display = gr.Dataframe(value=acc_models_df, interactive=False, label="πŸ”₯ Live Scores")
            score_chart_ai = gr.Plot(generate_score_chart_ai(acc_models_df))
            score_chart_assistant_ai = gr.Plot(generate_score_chart_assistant_ai(acc_models_df))
            score_chart_fun_ai = gr.Plot(generate_score_chart_fun_ai(acc_models_df))
            score_chart_conscious_ai = gr.Plot(generate_score_chart_conscious_ai(acc_models_df))
            score_chart_experimental_ai = gr.Plot(generate_score_chart_experimental_ai(acc_models_df))
            score_chart_laser = gr.Plot(generate_score_chart_laser(acc_models_df))
            score_chart_all_models = gr.Plot(generate_score_chart_all_models(acc_models_df))  # New chart for all models
            gr.HTML("<h3>🎨 AI Models</h3>")
            gr.HTML("<h3>⚑ Laser Models</h3>")
            gr.HTML("<h3>πŸ“Š All Models</h3>")  # Title for the new chart
# πŸ”„ **Auto-Update Leaderboard**
scheduler = BackgroundScheduler()
scheduler.add_job(lambda: leaderboard_display.update(*update_scores()), "interval", seconds=10)
scheduler.start()

demo.launch()