Spaces:
Sleeping
Sleeping
first commit
Browse files
LogReg.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pandas as pd
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
import seaborn as sns
|
5 |
+
import streamlit as st
|
6 |
+
from sklearn.preprocessing import StandardScaler
|
7 |
+
|
8 |
+
|
9 |
+
class LogisticRegression():
|
10 |
+
def __init__(self, learning_rate =0.01, n_inputs=500):
|
11 |
+
self.learning_rate = learning_rate
|
12 |
+
self.n_inputs = n_inputs
|
13 |
+
self.coef_ = None
|
14 |
+
self.intercept_ = None
|
15 |
+
|
16 |
+
def fit(self, X, y):
|
17 |
+
X = np.array(X)
|
18 |
+
n_samp, n_feat = X.shape
|
19 |
+
self.coef_ = np.zeros(n_feat)
|
20 |
+
self.intercept_ = 0
|
21 |
+
for _ in range(self.n_inputs):
|
22 |
+
lin_pred = [email protected]_ + self.intercept_
|
23 |
+
predictions = 1/(1+np.exp(-lin_pred))
|
24 |
+
|
25 |
+
di = predictions-y
|
26 |
+
dc = X * di.reshape(-1, 1)
|
27 |
+
|
28 |
+
self.coef_ -= self.learning_rate * dc.mean(axis=0)
|
29 |
+
self.intercept_ -= self.learning_rate * di.mean()
|
30 |
+
|
31 |
+
st.title('Выберите файл')
|
32 |
+
uploaded_file = st.file_uploader(label='', label_visibility='collapsed', type=["csv"])
|
33 |
+
if uploaded_file:
|
34 |
+
df = pd.read_csv(uploaded_file).drop('Unnamed: 0', axis=1)
|
35 |
+
st.write(df.head(3))
|
36 |
+
target = st.selectbox('Выберите столбец, который будет целью обучения', *[df.columns])
|
37 |
+
features = st.multiselect('Выберите признаки', *[df.columns])
|
38 |
+
if features:
|
39 |
+
new_df = df.copy()
|
40 |
+
ss = StandardScaler()
|
41 |
+
new_df[features] = ss.fit_transform(new_df[features])
|
42 |
+
|
43 |
+
logreg = LogisticRegression(0.01, 5000)
|
44 |
+
logreg.fit(new_df[features], new_df[target].to_numpy())
|
45 |
+
|
46 |
+
outdict = pd.DataFrame(logreg.coef_.reshape(1,-1), columns=features)
|
47 |
+
st. write(outdict)
|
48 |
+
|
49 |
+
st.write('# Графики :chart_with_upwards_trend:')
|
50 |
+
x = st.selectbox("Выберите X", *[df.columns])
|
51 |
+
y = st.selectbox('Выберите Y', *[df.columns])
|
52 |
+
if x and y:
|
53 |
+
choose = st.selectbox('Выберите график', ['Диаграмма рассеяния', 'Столбчатая диаграмма', 'Линейная диаграмма'])
|
54 |
+
if choose == 'Диаграмма рассеяния':
|
55 |
+
plt.figure(figsize=(20, 15))
|
56 |
+
plt.scatter(x=new_df[x], y=new_df[y])
|
57 |
+
plt.xlabel(x)
|
58 |
+
plt.ylabel(y)
|
59 |
+
plt.grid(True)
|
60 |
+
st.pyplot(plt)
|
61 |
+
elif choose == 'Столбчатая диаграмма':
|
62 |
+
plt.figure(figsize=(20, 15))
|
63 |
+
plt.bar(x=new_df[x].sort_values(), height=new_df[y].sort_values())
|
64 |
+
plt.xlabel(x)
|
65 |
+
plt.ylabel(y)
|
66 |
+
plt.grid(True)
|
67 |
+
st.pyplot(plt)
|
68 |
+
elif choose == 'Линейная диаграмма':
|
69 |
+
plt.figure(figsize=(20, 15))
|
70 |
+
plt.plot(new_df[x].sort_values(), new_df[y].sort_values())
|
71 |
+
plt.xlabel(x)
|
72 |
+
plt.ylabel(y)
|
73 |
+
plt.grid(True)
|
74 |
+
st.pyplot(plt)
|
75 |
+
|
76 |
+
|
77 |
+
|
78 |
+
|