Spaces:
Sleeping
Sleeping
appupgrade
Browse files
app.py
CHANGED
@@ -20,14 +20,12 @@ def embed_bert_cls(text, model, tokenizer):
|
|
20 |
embeddings = model_output.last_hidden_state[:, 0, :]
|
21 |
embeddings = torch.nn.functional.normalize(embeddings)
|
22 |
return embeddings[0].cpu().numpy()
|
23 |
-
|
24 |
-
# def for_embeded_list(series: pd.Series) -> np.array:
|
25 |
-
# return np.array([embed_bert_cls(i.replace('\xa0', ' '), model, tokenizer) for i in series])
|
26 |
embeded_list = load('embeded_list.joblib')
|
27 |
-
# embeded_list = for_embeded_list(films['description'])
|
28 |
text = st.text_input('Введите текст')
|
29 |
count_visible = st.number_input("Введите количество отображаемых элементов", 1, 10, 5, step=1)
|
30 |
if st.button("Найти", type="primary"):
|
|
|
31 |
if text and count_visible:
|
32 |
embeded_text = embed_bert_cls(text, model, tokenizer).reshape(1,-1)
|
33 |
cossim = pairwise_distances(embeded_text, embeded_list)[0]
|
@@ -36,6 +34,7 @@ if st.button("Найти", type="primary"):
|
|
36 |
with col1:
|
37 |
st.header(films.iloc[cossim.argsort()].iloc[i][2])
|
38 |
st.write(films.iloc[cossim.argsort()].iloc[i][3].replace('\xa0', ' '))
|
|
|
39 |
with col2:
|
40 |
try:
|
41 |
st.image(films.iloc[cossim.argsort()].iloc[i][1])
|
@@ -46,5 +45,6 @@ if st.button("Найти", type="primary"):
|
|
46 |
with col3:
|
47 |
st.header(films.iloc[cossim.argsort()].iloc[-1][2])
|
48 |
st.write(films.iloc[cossim.argsort()].iloc[-1][3].replace('\xa0', ' '))
|
|
|
49 |
with col4:
|
50 |
st.image(films.iloc[cossim.argsort()].iloc[-1][1])
|
|
|
20 |
embeddings = model_output.last_hidden_state[:, 0, :]
|
21 |
embeddings = torch.nn.functional.normalize(embeddings)
|
22 |
return embeddings[0].cpu().numpy()
|
23 |
+
|
|
|
|
|
24 |
embeded_list = load('embeded_list.joblib')
|
|
|
25 |
text = st.text_input('Введите текст')
|
26 |
count_visible = st.number_input("Введите количество отображаемых элементов", 1, 10, 5, step=1)
|
27 |
if st.button("Найти", type="primary"):
|
28 |
+
st.write('Количество фильмов в выборке 4950')
|
29 |
if text and count_visible:
|
30 |
embeded_text = embed_bert_cls(text, model, tokenizer).reshape(1,-1)
|
31 |
cossim = pairwise_distances(embeded_text, embeded_list)[0]
|
|
|
34 |
with col1:
|
35 |
st.header(films.iloc[cossim.argsort()].iloc[i][2])
|
36 |
st.write(films.iloc[cossim.argsort()].iloc[i][3].replace('\xa0', ' '))
|
37 |
+
st.write(f'Мера схожести евклидова расстояния {sorted(cossim)[i]:4f}')
|
38 |
with col2:
|
39 |
try:
|
40 |
st.image(films.iloc[cossim.argsort()].iloc[i][1])
|
|
|
45 |
with col3:
|
46 |
st.header(films.iloc[cossim.argsort()].iloc[-1][2])
|
47 |
st.write(films.iloc[cossim.argsort()].iloc[-1][3].replace('\xa0', ' '))
|
48 |
+
st.write(f'Мера схожести евклидова расстояния {sorted(cossim)[i]:.4f}')
|
49 |
with col4:
|
50 |
st.image(films.iloc[cossim.argsort()].iloc[-1][1])
|