Spaces:
Sleeping
Sleeping
app upgrade
Browse files
app.py
CHANGED
|
@@ -5,11 +5,12 @@ import pandas as pd
|
|
| 5 |
import numpy as np
|
| 6 |
import torch
|
| 7 |
from transformers import AutoTokenizer, AutoModel
|
|
|
|
| 8 |
|
| 9 |
tokenizer = AutoTokenizer.from_pretrained("cointegrated/rubert-tiny2")
|
| 10 |
model = AutoModel.from_pretrained("cointegrated/rubert-tiny2")
|
| 11 |
|
| 12 |
-
films = pd.read_csv('
|
| 13 |
films['description'] = films['description'].astype(str)
|
| 14 |
|
| 15 |
def embed_bert_cls(text, model, tokenizer):
|
|
@@ -19,27 +20,31 @@ def embed_bert_cls(text, model, tokenizer):
|
|
| 19 |
embeddings = model_output.last_hidden_state[:, 0, :]
|
| 20 |
embeddings = torch.nn.functional.normalize(embeddings)
|
| 21 |
return embeddings[0].cpu().numpy()
|
| 22 |
-
@st.cache_resource
|
| 23 |
-
def for_embeded_list(series: pd.Series) ->
|
| 24 |
-
|
| 25 |
-
embeded_list =
|
|
|
|
| 26 |
text = st.text_input('Введите текст')
|
| 27 |
-
count_visible = st.number_input("Введите количество отображаемых элементов", 1, 10, step=1)
|
| 28 |
-
if
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
st.header(
|
| 43 |
-
st.
|
| 44 |
-
|
| 45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
import numpy as np
|
| 6 |
import torch
|
| 7 |
from transformers import AutoTokenizer, AutoModel
|
| 8 |
+
from joblib import load
|
| 9 |
|
| 10 |
tokenizer = AutoTokenizer.from_pretrained("cointegrated/rubert-tiny2")
|
| 11 |
model = AutoModel.from_pretrained("cointegrated/rubert-tiny2")
|
| 12 |
|
| 13 |
+
films = pd.read_csv('movies_2.csv').dropna()
|
| 14 |
films['description'] = films['description'].astype(str)
|
| 15 |
|
| 16 |
def embed_bert_cls(text, model, tokenizer):
|
|
|
|
| 20 |
embeddings = model_output.last_hidden_state[:, 0, :]
|
| 21 |
embeddings = torch.nn.functional.normalize(embeddings)
|
| 22 |
return embeddings[0].cpu().numpy()
|
| 23 |
+
# @st.cache_resource
|
| 24 |
+
# def for_embeded_list(series: pd.Series) -> np.array:
|
| 25 |
+
# return np.array([embed_bert_cls(i.replace('\xa0', ' '), model, tokenizer) for i in series])
|
| 26 |
+
embeded_list = load('embeded_list.joblib')
|
| 27 |
+
# embeded_list = for_embeded_list(films['description'])
|
| 28 |
text = st.text_input('Введите текст')
|
| 29 |
+
count_visible = st.number_input("Введите количество отображаемых элементов", 1, 10, 5, step=1)
|
| 30 |
+
if st.button("Найти", type="primary"):
|
| 31 |
+
if text and count_visible:
|
| 32 |
+
embeded_text = embed_bert_cls(text, model, tokenizer).reshape(1,-1)
|
| 33 |
+
cossim = pairwise_distances(embeded_text, embeded_list)[0]
|
| 34 |
+
for i in range(count_visible):
|
| 35 |
+
col1, col2 = st.columns(2)
|
| 36 |
+
with col1:
|
| 37 |
+
st.header(films.iloc[cossim.argsort()].iloc[i][2])
|
| 38 |
+
st.write(films.iloc[cossim.argsort()].iloc[i][3].replace('\xa0', ' '))
|
| 39 |
+
with col2:
|
| 40 |
+
try:
|
| 41 |
+
st.image(films.iloc[cossim.argsort()].iloc[i][1])
|
| 42 |
+
except:
|
| 43 |
+
st.write('Нет картинки')
|
| 44 |
+
st.header('Самый не подходящий запрос')
|
| 45 |
+
col3, col4 = st.columns(2)
|
| 46 |
+
with col3:
|
| 47 |
+
st.header(films.iloc[cossim.argsort()].iloc[-1][2])
|
| 48 |
+
st.write(films.iloc[cossim.argsort()].iloc[-1][3].replace('\xa0', ' '))
|
| 49 |
+
with col4:
|
| 50 |
+
st.image(films.iloc[cossim.argsort()].iloc[-1][1])
|