Tech-Meld commited on
Commit
20a8d5c
·
verified ·
1 Parent(s): 1706ad9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -14
app.py CHANGED
@@ -1,5 +1,5 @@
1
  import gradio as gr
2
- from transformers import AutoTokenizer, AutoModelForCausalLM
3
  from playwright.sync_api import sync_playwright
4
  from flax import linen as nn
5
  from jax import random
@@ -28,34 +28,30 @@ class ActionModel(nn.Module):
28
  logits = self.dense(output)
29
  return logits, new_state
30
 
31
- # Initialize Flax model
32
- vocab_size = 50257
33
  hidden_size = 1024
34
  num_layers = 2
35
  key = random.PRNGKey(0)
36
  model = ActionModel(vocab_size, hidden_size, num_layers)
37
  init_state = model.lstm.initialize_carry(key, (1, hidden_size))
38
 
39
- # Function to generate actions using LLaVA model
40
  def generate_actions(input_text, browser, page):
41
- # Load LLaVA model
42
  tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
43
  model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
44
 
45
- # Prepare input for LLaVA
46
  inputs = tokenizer(input_text, return_tensors="pt")
47
  inputs = inputs.to(model.device)
48
 
49
- # Generate response
50
- outputs = model.generate(
51
- input_ids=inputs.input_ids,
52
- max_length=MAX_LENGTH,
53
- num_beams=NUM_BEAMS,
54
- temperature=0.7,
55
- )
56
 
57
  # Decode response and extract actions
58
- response = tokenizer.decode(outputs[0], skip_special_tokens=True)
59
  actions = response.split("\n")
60
 
61
  # Perform actions
 
1
  import gradio as gr
2
+ from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
3
  from playwright.sync_api import sync_playwright
4
  from flax import linen as nn
5
  from jax import random
 
28
  logits = self.dense(output)
29
  return logits, new_state
30
 
31
+ # Initialize Flax model and get its initial state
32
+ vocab_size = 50257 # Adjust this if needed for Zephyr-7b-beta
33
  hidden_size = 1024
34
  num_layers = 2
35
  key = random.PRNGKey(0)
36
  model = ActionModel(vocab_size, hidden_size, num_layers)
37
  init_state = model.lstm.initialize_carry(key, (1, hidden_size))
38
 
39
+ # Function to generate actions using Zephyr-7b-beta model
40
  def generate_actions(input_text, browser, page):
41
+ # Load Zephyr-7b-beta model
42
  tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
43
  model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
44
 
45
+ # Prepare input for Zephyr-7b-beta
46
  inputs = tokenizer(input_text, return_tensors="pt")
47
  inputs = inputs.to(model.device)
48
 
49
+ # Generate response (use pipeline for Zephyr-7b-beta)
50
+ generator = pipeline('text-generation', model=model, tokenizer=tokenizer)
51
+ outputs = generator(input_text, max_length=MAX_LENGTH, num_beams=NUM_BEAMS, temperature=0.7)
 
 
 
 
52
 
53
  # Decode response and extract actions
54
+ response = outputs[0]['generated_text']
55
  actions = response.split("\n")
56
 
57
  # Perform actions