Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,34 +1,116 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
|
3 |
|
4 |
-
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
model_id = "Tech-Meld/Hajax_Chat_1.0"
|
8 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
9 |
-
model = AutoModelForCausalLM.from_pretrained(model_id)
|
10 |
-
return model, tokenizer
|
11 |
|
12 |
-
def get_response(input_text,
|
13 |
inputs = tokenizer.encode(input_text + tokenizer.eos_token, return_tensors='pt')
|
14 |
-
outputs = model.generate(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
response = tokenizer.decode(outputs[:, inputs.shape[-1]:][0], skip_special_tokens=True)
|
16 |
return response
|
17 |
|
18 |
-
def
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
iface = gr.Interface(
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
title="Chat with AI",
|
32 |
-
description="
|
|
|
|
|
|
|
|
|
33 |
)
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
import time
|
4 |
+
import random
|
5 |
|
6 |
+
# Load the model and tokenizer
|
7 |
+
model_id = "Tech-Meld/Hajax_Chat_1.0"
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
9 |
+
model = AutoModelForCausalLM.from_pretrained(model_id)
|
10 |
|
11 |
+
# --- Functions ---
|
|
|
|
|
|
|
|
|
12 |
|
13 |
+
def get_response(input_text, temperature, top_p, top_k, max_length):
|
14 |
inputs = tokenizer.encode(input_text + tokenizer.eos_token, return_tensors='pt')
|
15 |
+
outputs = model.generate(
|
16 |
+
inputs,
|
17 |
+
max_length=max_length,
|
18 |
+
pad_token_id=tokenizer.eos_token_id,
|
19 |
+
temperature=temperature,
|
20 |
+
top_p=top_p,
|
21 |
+
top_k=top_k,
|
22 |
+
)
|
23 |
response = tokenizer.decode(outputs[:, inputs.shape[-1]:][0], skip_special_tokens=True)
|
24 |
return response
|
25 |
|
26 |
+
def analyze_text(text):
|
27 |
+
num_tokens = len(tokenizer.tokenize(text))
|
28 |
+
return {
|
29 |
+
"Number of characters": len(text),
|
30 |
+
"Number of words": len(text.split()),
|
31 |
+
"Number of tokens": num_tokens,
|
32 |
+
}
|
33 |
+
|
34 |
+
# --- Interface ---
|
35 |
+
|
36 |
+
css = """
|
37 |
+
.gradio-container {
|
38 |
+
background-color: #f0f0f0; /* Light background for the container */
|
39 |
+
}
|
40 |
+
|
41 |
+
.gradio-interface {
|
42 |
+
background-color: rgba(255, 255, 255, 0.8); /* Translucent white background */
|
43 |
+
border-radius: 15px; /* Rounded corners */
|
44 |
+
padding: 20px;
|
45 |
+
box-shadow: 0 0 10px rgba(0, 0, 0, 0.2); /* Subtle shadow */
|
46 |
+
}
|
47 |
+
|
48 |
+
.gradio-button {
|
49 |
+
background-color: #4CAF50; /* Green button color */
|
50 |
+
color: white;
|
51 |
+
border: none;
|
52 |
+
padding: 10px 20px;
|
53 |
+
text-align: center;
|
54 |
+
text-decoration: none;
|
55 |
+
display: inline-block;
|
56 |
+
font-size: 16px;
|
57 |
+
margin: 4px 2px;
|
58 |
+
cursor: pointer;
|
59 |
+
border-radius: 5px; /* Rounded corners */
|
60 |
+
}
|
61 |
+
|
62 |
+
.gradio-button:hover {
|
63 |
+
background-color: #3e8e41; /* Darker green on hover */
|
64 |
+
}
|
65 |
+
|
66 |
+
.gradio-text-area {
|
67 |
+
resize: vertical; /* Allow vertical resizing for text areas */
|
68 |
+
}
|
69 |
+
"""
|
70 |
|
71 |
iface = gr.Interface(
|
72 |
+
fn=get_response,
|
73 |
+
inputs=[
|
74 |
+
gr.Textbox(label="Your message:", lines=5, placeholder="Enter your message here...", show_label=True),
|
75 |
+
gr.Slider(label="Temperature", minimum=0.1, maximum=1.0, step=0.1, value=0.7),
|
76 |
+
gr.Slider(label="Top p", minimum=0.1, maximum=1.0, step=0.1, value=0.9),
|
77 |
+
gr.Slider(label="Top k", minimum=1, maximum=100, step=1, value=50),
|
78 |
+
gr.Slider(label="Max length", minimum=10, maximum=1000, step=10, value=250),
|
79 |
+
],
|
80 |
+
outputs=[
|
81 |
+
gr.TextArea(label="AI Response:", lines=10),
|
82 |
+
gr.Label(label="Text Analysis", elem_id="analysis"),
|
83 |
+
],
|
84 |
title="Chat with AI",
|
85 |
+
description="Engage in a conversation with our advanced AI model. Customize the response using various parameters.",
|
86 |
+
theme="default", # Use a custom theme to override the default Gradio styling
|
87 |
+
css=css, # Apply the CSS styles defined earlier
|
88 |
+
layout="vertical",
|
89 |
+
allow_flagging="never",
|
90 |
)
|
91 |
+
|
92 |
+
# --- Dynamic Background ---
|
93 |
+
|
94 |
+
def update_background():
|
95 |
+
while True:
|
96 |
+
r = random.randint(0, 255)
|
97 |
+
g = random.randint(0, 255)
|
98 |
+
b = random.randint(0, 255)
|
99 |
+
iface.root.style.background_color = f"rgb({r}, {g}, {b})" # Set dynamic background color
|
100 |
+
time.sleep(1) # Update every second
|
101 |
+
|
102 |
+
# Start a separate thread to update the background color
|
103 |
+
gr.Interface.update(update_background, inputs=[], outputs=[], live=True)
|
104 |
+
|
105 |
+
# --- Analysis Logic ---
|
106 |
+
|
107 |
+
def update_analysis(response):
|
108 |
+
analysis = analyze_text(response)
|
109 |
+
analysis_str = f"Number of characters: {analysis['Number of characters']}\n" \
|
110 |
+
f"Number of words: {analysis['Number of words']}\n" \
|
111 |
+
f"Number of tokens: {analysis['Number of tokens']}"
|
112 |
+
iface.update(analysis=analysis_str, live=True) # Update analysis section with the generated data
|
113 |
+
|
114 |
+
iface.outputs[0].postprocess = update_analysis # Update analysis after every response
|
115 |
+
|
116 |
+
iface.launch(debug=True)
|