import gradio as gr from huggingface_hub import InferenceClient client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response # Add a title to the UI title = "Corenet" # Modify the pre-prompt to be editable but greyed out pre_prompt = gr.Textbox( value="You are a friendly Chatbot, and you are a finetuned version of Llama-3 8B made possible by HX", label="Pre-prompt", interactive=True, placeholder="Type here...", ) demo = gr.ChatInterface( respond, title=title, additional_inputs=[ pre_prompt, gr.Slider(minimum=256, maximum=8192, value=512, step=1, label="Max Gen tokens"), gr.Slider(minimum=0.3, maximum=2.5, value=0.8, step=0.1, label="Creativity"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()