Tech-Meld commited on
Commit
5614c61
·
verified ·
1 Parent(s): 039dc13

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +105 -96
app.py CHANGED
@@ -1,146 +1,155 @@
1
  import gradio as gr
2
  import numpy as np
3
  import random
4
- from diffusers import DiffusionPipeline
5
  import torch
 
 
6
 
7
  device = "cuda" if torch.cuda.is_available() else "cpu"
 
8
 
9
- if torch.cuda.is_available():
10
- torch.cuda.max_memory_allocated(device=device)
11
- pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
12
- pipe.enable_xformers_memory_efficient_attention()
13
- pipe = pipe.to(device)
14
- else:
15
- pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
16
- pipe = pipe.to(device)
17
 
18
  MAX_SEED = np.iinfo(np.int32).max
19
- MAX_IMAGE_SIZE = 1024
20
 
21
- def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
 
 
 
 
22
 
23
- if randomize_seed:
24
- seed = random.randint(0, MAX_SEED)
25
-
26
- generator = torch.Generator().manual_seed(seed)
27
-
28
- image = pipe(
29
- prompt = prompt,
30
- negative_prompt = negative_prompt,
31
- guidance_scale = guidance_scale,
32
- num_inference_steps = num_inference_steps,
33
- width = width,
34
- height = height,
35
- generator = generator
36
- ).images[0]
37
-
38
- return image
39
 
40
  examples = [
41
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
42
- "An astronaut riding a green horse",
43
- "A delicious ceviche cheesecake slice",
44
  ]
45
 
46
  css="""
47
  #col-container {
48
  margin: 0 auto;
49
- max-width: 520px;
50
  }
51
  """
52
 
53
- if torch.cuda.is_available():
54
- power_device = "GPU"
55
- else:
56
- power_device = "CPU"
57
-
58
  with gr.Blocks(css=css) as demo:
59
-
60
  with gr.Column(elem_id="col-container"):
61
  gr.Markdown(f"""
62
- # Text-to-Image Gradio Template
63
- Currently running on {power_device}.
64
  """)
65
-
66
- with gr.Row():
67
-
68
- prompt = gr.Text(
69
- label="Prompt",
70
- show_label=False,
71
- max_lines=1,
72
- placeholder="Enter your prompt",
73
- container=False,
74
- )
75
-
76
- run_button = gr.Button("Run", scale=0)
77
-
78
- result = gr.Image(label="Result", show_label=False)
79
 
80
- with gr.Accordion("Advanced Settings", open=False):
81
-
82
- negative_prompt = gr.Text(
83
- label="Negative prompt",
84
- max_lines=1,
85
- placeholder="Enter a negative prompt",
86
- visible=False,
87
- )
88
-
89
- seed = gr.Slider(
90
- label="Seed",
91
- minimum=0,
92
- maximum=MAX_SEED,
93
- step=1,
94
- value=0,
95
- )
96
-
97
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
98
-
99
- with gr.Row():
100
-
101
- width = gr.Slider(
 
 
102
  label="Width",
103
  minimum=256,
104
  maximum=MAX_IMAGE_SIZE,
105
- step=32,
106
  value=512,
107
  )
108
-
109
- height = gr.Slider(
110
  label="Height",
111
  minimum=256,
112
  maximum=MAX_IMAGE_SIZE,
113
- step=32,
114
  value=512,
115
  )
116
-
117
- with gr.Row():
118
-
119
- guidance_scale = gr.Slider(
120
  label="Guidance scale",
121
  minimum=0.0,
122
  maximum=10.0,
123
  step=0.1,
124
- value=0.0,
125
  )
126
-
127
- num_inference_steps = gr.Slider(
128
  label="Number of inference steps",
129
  minimum=1,
130
- maximum=12,
131
  step=1,
132
- value=2,
133
  )
134
-
 
 
 
 
 
 
 
135
  gr.Examples(
136
  examples = examples,
137
- inputs = [prompt]
 
 
 
 
 
 
 
 
 
138
  )
139
 
140
- run_button.click(
141
- fn = infer,
142
- inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
143
- outputs = [result]
144
- )
145
 
146
- demo.queue().launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
  import numpy as np
3
  import random
 
4
  import torch
5
+ from diffusers import StableDiffusion3Pipeline, SD3Transformer2DModel, FlowMatchEulerDiscreteScheduler
6
+ import spaces
7
 
8
  device = "cuda" if torch.cuda.is_available() else "cpu"
9
+ dtype = torch.float16
10
 
11
+ repo = "stabilityai/stable-diffusion-3-medium-diffusers"
12
+ pipe = StableDiffusion3Pipeline.from_pretrained(repo, torch_dtype=torch.float16).to(device)
 
 
 
 
 
 
13
 
14
  MAX_SEED = np.iinfo(np.int32).max
15
+ MAX_IMAGE_SIZE = 1344
16
 
17
+ def infer(prompts, negative_prompts, seeds, randomize_seeds, widths, heights, guidance_scales, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
18
+ images = []
19
+ for i, prompt in enumerate(prompts):
20
+ if randomize_seeds[i]:
21
+ seeds[i] = random.randint(0, MAX_SEED)
22
 
23
+ generator = torch.Generator().manual_seed(seeds[i])
24
+
25
+ image = pipe(
26
+ prompt=prompt,
27
+ negative_prompt=negative_prompts[i],
28
+ guidance_scale=guidance_scales[i],
29
+ num_inference_steps=num_inference_steps[i],
30
+ width=widths[i],
31
+ height=heights[i],
32
+ generator=generator
33
+ ).images[0]
34
+
35
+ images.append(image)
36
+
37
+ return images, seeds
 
38
 
39
  examples = [
40
+ ["Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", "A blurry astronaut", 0, True, 512, 512, 7.5, 28],
41
+ ["An astronaut riding a green horse", "Astronaut on a regular horse", 0, True, 512, 512, 7.5, 28],
42
+ ["A delicious ceviche cheesecake slice", "A cheesecake that looks boring", 0, True, 512, 512, 7.5, 28],
43
  ]
44
 
45
  css="""
46
  #col-container {
47
  margin: 0 auto;
48
+ max-width: 580px;
49
  }
50
  """
51
 
 
 
 
 
 
52
  with gr.Blocks(css=css) as demo:
53
+
54
  with gr.Column(elem_id="col-container"):
55
  gr.Markdown(f"""
56
+ # Demo [Automated Stable Diffusion 3 Medium](https://huggingface.co/stabilityai/stable-diffusion-3-medium)
 
57
  """)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58
 
59
+ with gr.Row():
60
+ prompt_group = gr.Group(elem_id="prompt_group")
61
+ with prompt_group:
62
+ prompt_input = gr.Text(
63
+ label="Prompt",
64
+ show_label=False,
65
+ max_lines=1,
66
+ placeholder="Enter your prompt",
67
+ container=False,
68
+ )
69
+ negative_prompt_input = gr.Text(
70
+ label="Negative prompt",
71
+ max_lines=1,
72
+ placeholder="Enter a negative prompt",
73
+ )
74
+ seed_input = gr.Slider(
75
+ label="Seed",
76
+ minimum=0,
77
+ maximum=MAX_SEED,
78
+ step=1,
79
+ value=0,
80
+ )
81
+ randomize_seed_input = gr.Checkbox(label="Randomize seed", value=True)
82
+ width_input = gr.Slider(
83
  label="Width",
84
  minimum=256,
85
  maximum=MAX_IMAGE_SIZE,
86
+ step=64,
87
  value=512,
88
  )
89
+ height_input = gr.Slider(
 
90
  label="Height",
91
  minimum=256,
92
  maximum=MAX_IMAGE_SIZE,
93
+ step=64,
94
  value=512,
95
  )
96
+ guidance_scale_input = gr.Slider(
 
 
 
97
  label="Guidance scale",
98
  minimum=0.0,
99
  maximum=10.0,
100
  step=0.1,
101
+ value=7.5,
102
  )
103
+ num_inference_steps_input = gr.Slider(
 
104
  label="Number of inference steps",
105
  minimum=1,
106
+ maximum=50,
107
  step=1,
108
+ value=28,
109
  )
110
+ run_button = gr.Button("Run", scale=0)
111
+
112
+ result = gr.Gallery(label="Results", show_label=False, columns=4, rows=1)
113
+ add_button = gr.Button("Add Prompt")
114
+
115
+ with gr.Accordion("Advanced Settings", open=False):
116
+ pass
117
+
118
  gr.Examples(
119
  examples = examples,
120
+ inputs = [
121
+ prompt_input,
122
+ negative_prompt_input,
123
+ seed_input,
124
+ randomize_seed_input,
125
+ width_input,
126
+ height_input,
127
+ guidance_scale_input,
128
+ num_inference_steps_input
129
+ ]
130
  )
131
 
132
+ def add_prompt():
133
+ prompt_group.duplicate()
134
+
135
+ def clear_prompts():
136
+ prompt_group.clear()
137
 
138
+ add_button.click(add_prompt)
139
+ gr.on(
140
+ triggers=[run_button.click, prompt_input.submit, negative_prompt_input.submit],
141
+ fn=infer,
142
+ inputs=[
143
+ prompt_input,
144
+ negative_prompt_input,
145
+ seed_input,
146
+ randomize_seed_input,
147
+ width_input,
148
+ height_input,
149
+ guidance_scale_input,
150
+ num_inference_steps_input
151
+ ],
152
+ outputs=[result, seed_input],
153
+ api_name="infer"
154
+ )
155
+ demo.launch()