Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,146 +1,155 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
4 |
-
from diffusers import DiffusionPipeline
|
5 |
import torch
|
|
|
|
|
6 |
|
7 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
|
12 |
-
pipe.enable_xformers_memory_efficient_attention()
|
13 |
-
pipe = pipe.to(device)
|
14 |
-
else:
|
15 |
-
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
|
16 |
-
pipe = pipe.to(device)
|
17 |
|
18 |
MAX_SEED = np.iinfo(np.int32).max
|
19 |
-
MAX_IMAGE_SIZE =
|
20 |
|
21 |
-
def infer(
|
|
|
|
|
|
|
|
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
return image
|
39 |
|
40 |
examples = [
|
41 |
-
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
42 |
-
"An astronaut riding a green horse",
|
43 |
-
"A delicious ceviche cheesecake slice",
|
44 |
]
|
45 |
|
46 |
css="""
|
47 |
#col-container {
|
48 |
margin: 0 auto;
|
49 |
-
max-width:
|
50 |
}
|
51 |
"""
|
52 |
|
53 |
-
if torch.cuda.is_available():
|
54 |
-
power_device = "GPU"
|
55 |
-
else:
|
56 |
-
power_device = "CPU"
|
57 |
-
|
58 |
with gr.Blocks(css=css) as demo:
|
59 |
-
|
60 |
with gr.Column(elem_id="col-container"):
|
61 |
gr.Markdown(f"""
|
62 |
-
#
|
63 |
-
Currently running on {power_device}.
|
64 |
""")
|
65 |
-
|
66 |
-
with gr.Row():
|
67 |
-
|
68 |
-
prompt = gr.Text(
|
69 |
-
label="Prompt",
|
70 |
-
show_label=False,
|
71 |
-
max_lines=1,
|
72 |
-
placeholder="Enter your prompt",
|
73 |
-
container=False,
|
74 |
-
)
|
75 |
-
|
76 |
-
run_button = gr.Button("Run", scale=0)
|
77 |
-
|
78 |
-
result = gr.Image(label="Result", show_label=False)
|
79 |
|
80 |
-
with gr.
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
|
|
|
|
102 |
label="Width",
|
103 |
minimum=256,
|
104 |
maximum=MAX_IMAGE_SIZE,
|
105 |
-
step=
|
106 |
value=512,
|
107 |
)
|
108 |
-
|
109 |
-
height = gr.Slider(
|
110 |
label="Height",
|
111 |
minimum=256,
|
112 |
maximum=MAX_IMAGE_SIZE,
|
113 |
-
step=
|
114 |
value=512,
|
115 |
)
|
116 |
-
|
117 |
-
with gr.Row():
|
118 |
-
|
119 |
-
guidance_scale = gr.Slider(
|
120 |
label="Guidance scale",
|
121 |
minimum=0.0,
|
122 |
maximum=10.0,
|
123 |
step=0.1,
|
124 |
-
value=
|
125 |
)
|
126 |
-
|
127 |
-
num_inference_steps = gr.Slider(
|
128 |
label="Number of inference steps",
|
129 |
minimum=1,
|
130 |
-
maximum=
|
131 |
step=1,
|
132 |
-
value=
|
133 |
)
|
134 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
gr.Examples(
|
136 |
examples = examples,
|
137 |
-
inputs = [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
)
|
139 |
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
|
146 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
|
|
4 |
import torch
|
5 |
+
from diffusers import StableDiffusion3Pipeline, SD3Transformer2DModel, FlowMatchEulerDiscreteScheduler
|
6 |
+
import spaces
|
7 |
|
8 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
9 |
+
dtype = torch.float16
|
10 |
|
11 |
+
repo = "stabilityai/stable-diffusion-3-medium-diffusers"
|
12 |
+
pipe = StableDiffusion3Pipeline.from_pretrained(repo, torch_dtype=torch.float16).to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
MAX_SEED = np.iinfo(np.int32).max
|
15 |
+
MAX_IMAGE_SIZE = 1344
|
16 |
|
17 |
+
def infer(prompts, negative_prompts, seeds, randomize_seeds, widths, heights, guidance_scales, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
|
18 |
+
images = []
|
19 |
+
for i, prompt in enumerate(prompts):
|
20 |
+
if randomize_seeds[i]:
|
21 |
+
seeds[i] = random.randint(0, MAX_SEED)
|
22 |
|
23 |
+
generator = torch.Generator().manual_seed(seeds[i])
|
24 |
+
|
25 |
+
image = pipe(
|
26 |
+
prompt=prompt,
|
27 |
+
negative_prompt=negative_prompts[i],
|
28 |
+
guidance_scale=guidance_scales[i],
|
29 |
+
num_inference_steps=num_inference_steps[i],
|
30 |
+
width=widths[i],
|
31 |
+
height=heights[i],
|
32 |
+
generator=generator
|
33 |
+
).images[0]
|
34 |
+
|
35 |
+
images.append(image)
|
36 |
+
|
37 |
+
return images, seeds
|
|
|
38 |
|
39 |
examples = [
|
40 |
+
["Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", "A blurry astronaut", 0, True, 512, 512, 7.5, 28],
|
41 |
+
["An astronaut riding a green horse", "Astronaut on a regular horse", 0, True, 512, 512, 7.5, 28],
|
42 |
+
["A delicious ceviche cheesecake slice", "A cheesecake that looks boring", 0, True, 512, 512, 7.5, 28],
|
43 |
]
|
44 |
|
45 |
css="""
|
46 |
#col-container {
|
47 |
margin: 0 auto;
|
48 |
+
max-width: 580px;
|
49 |
}
|
50 |
"""
|
51 |
|
|
|
|
|
|
|
|
|
|
|
52 |
with gr.Blocks(css=css) as demo:
|
53 |
+
|
54 |
with gr.Column(elem_id="col-container"):
|
55 |
gr.Markdown(f"""
|
56 |
+
# Demo [Automated Stable Diffusion 3 Medium](https://huggingface.co/stabilityai/stable-diffusion-3-medium)
|
|
|
57 |
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
+
with gr.Row():
|
60 |
+
prompt_group = gr.Group(elem_id="prompt_group")
|
61 |
+
with prompt_group:
|
62 |
+
prompt_input = gr.Text(
|
63 |
+
label="Prompt",
|
64 |
+
show_label=False,
|
65 |
+
max_lines=1,
|
66 |
+
placeholder="Enter your prompt",
|
67 |
+
container=False,
|
68 |
+
)
|
69 |
+
negative_prompt_input = gr.Text(
|
70 |
+
label="Negative prompt",
|
71 |
+
max_lines=1,
|
72 |
+
placeholder="Enter a negative prompt",
|
73 |
+
)
|
74 |
+
seed_input = gr.Slider(
|
75 |
+
label="Seed",
|
76 |
+
minimum=0,
|
77 |
+
maximum=MAX_SEED,
|
78 |
+
step=1,
|
79 |
+
value=0,
|
80 |
+
)
|
81 |
+
randomize_seed_input = gr.Checkbox(label="Randomize seed", value=True)
|
82 |
+
width_input = gr.Slider(
|
83 |
label="Width",
|
84 |
minimum=256,
|
85 |
maximum=MAX_IMAGE_SIZE,
|
86 |
+
step=64,
|
87 |
value=512,
|
88 |
)
|
89 |
+
height_input = gr.Slider(
|
|
|
90 |
label="Height",
|
91 |
minimum=256,
|
92 |
maximum=MAX_IMAGE_SIZE,
|
93 |
+
step=64,
|
94 |
value=512,
|
95 |
)
|
96 |
+
guidance_scale_input = gr.Slider(
|
|
|
|
|
|
|
97 |
label="Guidance scale",
|
98 |
minimum=0.0,
|
99 |
maximum=10.0,
|
100 |
step=0.1,
|
101 |
+
value=7.5,
|
102 |
)
|
103 |
+
num_inference_steps_input = gr.Slider(
|
|
|
104 |
label="Number of inference steps",
|
105 |
minimum=1,
|
106 |
+
maximum=50,
|
107 |
step=1,
|
108 |
+
value=28,
|
109 |
)
|
110 |
+
run_button = gr.Button("Run", scale=0)
|
111 |
+
|
112 |
+
result = gr.Gallery(label="Results", show_label=False, columns=4, rows=1)
|
113 |
+
add_button = gr.Button("Add Prompt")
|
114 |
+
|
115 |
+
with gr.Accordion("Advanced Settings", open=False):
|
116 |
+
pass
|
117 |
+
|
118 |
gr.Examples(
|
119 |
examples = examples,
|
120 |
+
inputs = [
|
121 |
+
prompt_input,
|
122 |
+
negative_prompt_input,
|
123 |
+
seed_input,
|
124 |
+
randomize_seed_input,
|
125 |
+
width_input,
|
126 |
+
height_input,
|
127 |
+
guidance_scale_input,
|
128 |
+
num_inference_steps_input
|
129 |
+
]
|
130 |
)
|
131 |
|
132 |
+
def add_prompt():
|
133 |
+
prompt_group.duplicate()
|
134 |
+
|
135 |
+
def clear_prompts():
|
136 |
+
prompt_group.clear()
|
137 |
|
138 |
+
add_button.click(add_prompt)
|
139 |
+
gr.on(
|
140 |
+
triggers=[run_button.click, prompt_input.submit, negative_prompt_input.submit],
|
141 |
+
fn=infer,
|
142 |
+
inputs=[
|
143 |
+
prompt_input,
|
144 |
+
negative_prompt_input,
|
145 |
+
seed_input,
|
146 |
+
randomize_seed_input,
|
147 |
+
width_input,
|
148 |
+
height_input,
|
149 |
+
guidance_scale_input,
|
150 |
+
num_inference_steps_input
|
151 |
+
],
|
152 |
+
outputs=[result, seed_input],
|
153 |
+
api_name="infer"
|
154 |
+
)
|
155 |
+
demo.launch()
|