Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -3,6 +3,8 @@ from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDisc
|
|
3 |
from huggingface_hub import hf_hub_download
|
4 |
from safetensors.torch import load_file
|
5 |
import gradio as gr
|
|
|
|
|
6 |
|
7 |
base = "stabilityai/stable-diffusion-xl-base-1.0"
|
8 |
repo = "ByteDance/SDXL-Lightning"
|
@@ -12,24 +14,32 @@ ckpt = "sdxl_lightning_4step_unet.safetensors"
|
|
12 |
unet = UNet2DConditionModel.from_config(base, subfolder="unet").to("cpu")
|
13 |
unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device="cpu"))
|
14 |
pipe = StableDiffusionXLPipeline.from_pretrained(base, unet=unet, torch_dtype=torch.float32).to("cpu")
|
|
|
|
|
15 |
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
|
16 |
|
17 |
def generate_images(prompt, num_inference_steps, guidance_scale, batch_size):
|
18 |
-
|
|
|
19 |
return images
|
20 |
|
21 |
# Define Gradio interface
|
|
|
|
|
|
|
|
|
|
|
22 |
iface = gr.Interface(
|
23 |
fn=generate_images,
|
24 |
inputs=[
|
25 |
gr.Textbox(label="Prompt"),
|
26 |
-
gr.Slider(label="Num Inference Steps", minimum=1, maximum=50, step=1, value=4),
|
27 |
gr.Slider(label="Guidance Scale", minimum=0, maximum=20, step=0.1, value=0),
|
28 |
-
gr.Slider(label="Batch Size", minimum=1, maximum=
|
29 |
],
|
30 |
outputs=gr.Gallery(label="Generated Images"),
|
31 |
title="SDXL Lightning 4-Step Inference (CPU)",
|
32 |
description="Generate images with Stable Diffusion XL Lightning 4-Step model on CPU.",
|
|
|
33 |
)
|
34 |
|
35 |
iface.launch()
|
|
|
3 |
from huggingface_hub import hf_hub_download
|
4 |
from safetensors.torch import load_file
|
5 |
import gradio as gr
|
6 |
+
from tqdm.auto import tqdm
|
7 |
+
import psutil
|
8 |
|
9 |
base = "stabilityai/stable-diffusion-xl-base-1.0"
|
10 |
repo = "ByteDance/SDXL-Lightning"
|
|
|
14 |
unet = UNet2DConditionModel.from_config(base, subfolder="unet").to("cpu")
|
15 |
unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device="cpu"))
|
16 |
pipe = StableDiffusionXLPipeline.from_pretrained(base, unet=unet, torch_dtype=torch.float32).to("cpu")
|
17 |
+
|
18 |
+
# Ensure sampler uses "trailing" timesteps.
|
19 |
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
|
20 |
|
21 |
def generate_images(prompt, num_inference_steps, guidance_scale, batch_size):
|
22 |
+
with tqdm(total=num_inference_steps, desc="Inference Progress") as pbar:
|
23 |
+
images = pipe(prompt, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, batch_size=batch_size, progress_bar=pbar).images
|
24 |
return images
|
25 |
|
26 |
# Define Gradio interface
|
27 |
+
def get_cpu_info():
|
28 |
+
cpu_name = psutil.cpu_freq().brand
|
29 |
+
memory_available = psutil.virtual_memory().available // 1024 // 1024
|
30 |
+
return f"CPU: {cpu_name}, Memory: {memory_available} MB"
|
31 |
+
|
32 |
iface = gr.Interface(
|
33 |
fn=generate_images,
|
34 |
inputs=[
|
35 |
gr.Textbox(label="Prompt"),
|
|
|
36 |
gr.Slider(label="Guidance Scale", minimum=0, maximum=20, step=0.1, value=0),
|
37 |
+
gr.Slider(label="Batch Size", minimum=1, maximum=4, step=1, value=1),
|
38 |
],
|
39 |
outputs=gr.Gallery(label="Generated Images"),
|
40 |
title="SDXL Lightning 4-Step Inference (CPU)",
|
41 |
description="Generate images with Stable Diffusion XL Lightning 4-Step model on CPU.",
|
42 |
+
extra_info=get_cpu_info,
|
43 |
)
|
44 |
|
45 |
iface.launch()
|