File size: 13,194 Bytes
70a42a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3eb144e
70a42a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
374a6d8
70a42a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36c12ab
70a42a8
 
 
 
 
 
 
 
 
 
 
 
3eb144e
0617850
 
3eb144e
0617850
70a42a8
5fbed6e
 
70a42a8
 
 
 
 
 
883e871
36c12ab
baace61
883e871
 
 
 
 
 
 
 
 
 
 
 
 
70a42a8
883e871
7e8c4e1
2e60cd2
3eb144e
70a42a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
374a6d8
70a42a8
 
b5ca7ca
6f1dcd6
 
 
 
 
 
 
70a42a8
 
 
b5ca7ca
 
 
6f1dcd6
70a42a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e60cd2
70a42a8
 
 
 
 
 
 
 
 
2e60cd2
70a42a8
 
 
2e60cd2
70a42a8
2e60cd2
 
 
 
70a42a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311

from modelscope import AutoModelForCausalLM, AutoTokenizer, GenerationConfig, snapshot_download
from argparse import ArgumentParser
from pathlib import Path
import shutil
import copy
import gradio as gr
import os
import re
import secrets
import tempfile

#GlobalVariables
os.environ['CUDA_VISIBLE_DEVICES'] = '0,1'
DEFAULT_CKPT_PATH = 'qwen/Qwen-VL-Chat'
REVISION = 'v1.0.4'
BOX_TAG_PATTERN = r"<box>([\s\S]*?)</box>"
PUNCTUATION = "!?。"#$%&'()*+,-/:;<=>@[\]^_`{|}~⦅⦆「」、、〃》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏."
uploaded_file_dir = os.environ.get("GRADIO_TEMP_DIR") or str(Path(tempfile.gettempdir()) / "gradio")
tokenizer = None
model = None

def _get_args() -> ArgumentParser:
    parser = ArgumentParser()
    parser.add_argument("-c", "--checkpoint-path", type=str, default=DEFAULT_CKPT_PATH,
                        help="Checkpoint name or path, default to %(default)r")
    parser.add_argument("--revision", type=str, default=REVISION)
    parser.add_argument("--cpu-only", action="store_true", help="Run demo with CPU only")

    parser.add_argument("--share", action="store_true", default=False,
                        help="Create a publicly shareable link for the interface.")
    parser.add_argument("--inbrowser", action="store_true", default=False,
                        help="Automatically launch the interface in a new tab on the default browser.")
    parser.add_argument("--server-port", type=int, default=8000,
                        help="Demo server port.")
    parser.add_argument("--server-name", type=str, default="127.0.0.1",
                        help="Demo server name.")

    args = parser.parse_args()
    return args

def handle_image_submission(_chatbot, task_history, file) -> tuple:
    if file is None:
        return _chatbot, task_history
    file_path = save_image(file, uploaded_file_dir)
    history_item = ((file_path,), None)
    _chatbot.append(history_item)
    task_history.append(history_item)
    return predict(_chatbot, task_history)

    
def _load_model_tokenizer(args) -> tuple:
    global tokenizer, model
    model_id = args.checkpoint_path
    model_dir = snapshot_download(model_id, revision=args.revision)
    tokenizer = AutoTokenizer.from_pretrained(
        model_dir, trust_remote_code=True, resume_download=True,
    )

    if args.cpu_only:
        device_map = "cpu"
    else:
        device_map = "auto"

    model = AutoModelForCausalLM.from_pretrained(
        model_dir,
        device_map=device_map,
        trust_remote_code=True,
        bf16=True,
        resume_download=True,
    ).eval()
    model.generation_config = GenerationConfig.from_pretrained(
        model_dir, trust_remote_code=True, resume_download=True,
    )

    return model, tokenizer


def _parse_text(text: str) -> str:
    lines = text.split("\n")
    lines = [line for line in lines if line != ""]
    count = 0
    for i, line in enumerate(lines):
        if "```" in line:
            count += 1
            items = line.split("`")
            if count % 2 == 1:
                lines[i] = f'<pre><code class="language-{items[-1]}">'
            else:
                lines[i] = f"<br></code></pre>"
        else:
            if i > 0:
                if count % 2 == 1:
                    line = line.replace("`", r"\`")
                    line = line.replace("<", "&lt;")
                    line = line.replace(">", "&gt;")
                    line = line.replace(" ", "&nbsp;")
                    line = line.replace("*", "&ast;")
                    line = line.replace("_", "&lowbar;")
                    line = line.replace("-", "&#45;")
                    line = line.replace(".", "&#46;")
                    line = line.replace("!", "&#33;")
                    line = line.replace("(", "&#40;")
                    line = line.replace(")", "&#41;")
                    line = line.replace("$", "&#36;")
                lines[i] = "<br>" + line
    text = "".join(lines)
    return text

def save_image(image_file, upload_dir: str) -> str:
    Path(upload_dir).mkdir(parents=True, exist_ok=True)
    filename = secrets.token_hex(10) + Path(image_file.name).suffix
    file_path = Path(upload_dir) / filename
    with open(image_file, "rb") as f_input, open(file_path, "wb") as f_output:
        f_output.write(f_input.read())
    return str(file_path)


def add_file(history, task_history, file):
    if file is None:
        return history, task_history
    file_path = save_image(file)
    history = history + [((file_path,), None)]
    task_history = task_history + [((file_path,), None)]
    return history, task_history

def predict(_chatbot, task_history) -> tuple:
    if not _chatbot:
        return _chatbot, task_history
    chat_query, chat_response = _chatbot[-1]
    print("predict called")
    if isinstance(chat_query, tuple):
        chat_query = chat_query[0]
        query = [{'image': chat_query}]
    else:
        query = [{'text': _parse_text(chat_query)}]
    inputs = tokenizer.from_list_format(query)
    tokenized_inputs = tokenizer(inputs, return_tensors='pt')
    tokenized_inputs = tokenized_inputs.to(model.device)
    pred = model.generate(**tokenized_inputs)
    response = tokenizer.decode(pred.cpu()[0], skip_special_tokens=False)
    if 'image' in query[0]:
        print("Model response:", response)
        image = tokenizer.draw_bbox_on_latest_picture(response)
        if image is not None:
            image_path = save_image(image, uploaded_file_dir)
            formatted_response = (chat_query, image_path)
        else:
            formatted_response = (chat_query, response)
    else:
        text_response = response.strip()
        formatted_response = (chat_query, text_response)

    _chatbot[-1] = formatted_response
    if task_history:
        task_history[-1] = formatted_response
    else:
        task_history.append(formatted_response)

    return _chatbot, task_history

def save_uploaded_image(image_file, upload_dir):
    if image is None:
        return None
    temp_dir = secrets.token_hex(20)
    temp_dir = Path(uploaded_file_dir) / temp_dir
    temp_dir.mkdir(exist_ok=True, parents=True)
    name = f"tmp{secrets.token_hex(5)}.jpg"
    filename = temp_dir / name
    image.save(str(filename))
    return str(filename)

def regenerate(_chatbot, task_history) -> list:
    if not task_history:
        return _chatbot
    item = task_history[-1]
    if item[1] is None:
        return _chatbot
    task_history[-1] = (item[0], None)
    chatbot_item = _chatbot.pop(-1)
    if chatbot_item[0] is None:
        _chatbot[-1] = (_chatbot[-1][0], None)
    else:
        _chatbot.append((chatbot_item[0], None))
    return predict(_chatbot, task_history)

def add_text(history, task_history, text) -> tuple:
    if not text.strip():
        return history, task_history, chatbot
    if not any(isinstance(item[0], tuple) for item in history):
        prompt = "Please upload and submit an image to get started."
        history.append((prompt, None))
        task_history.append((prompt, None))
        chatbot.append(prompt)
        return history, task_history, chatbot
    task_text = text
    if len(text) >= 2 and text[-1] in PUNCTUATION and text[-2] not in PUNCTUATION:
        task_text = text[:-1]
    history_item = (_parse_text(task_text), None)
    history.append(history_item)
    task_history.append(history_item)
    return history, task_history, chatbot

def add_file(history, task_history, file):
    if file is None:
        return history, task_history  # Return if no file is uploaded
    file_path = file.name
    history = history + [((file.name,), None)]
    task_history = task_history + [((file.name,), None)]
    return history, task_history

def reset_user_input():
    return gr.update(value="")
    
def process_response(response: str) -> str:
    response = response.replace("<ref>", "").replace(r"</ref>", "")
    response = re.sub(BOX_TAG_PATTERN, "", response)
    return response
    
def process_history_for_model(task_history) -> list:
    processed_history = []
    for query, response in task_history:
        if isinstance(query, tuple): 
            query = {'image': query[0]}
        else:
            query = {'text': query}
        response = response or ""
        processed_history.append((query, response))
    return processed_history

def reset_state(task_history) -> list:
    task_history.clear()
    return []


def _launch_demo(args, model, tokenizer):
    uploaded_file_dir = os.environ.get("GRADIO_TEMP_DIR") or str(
        Path(tempfile.gettempdir()) / "gradio"
    )

    with gr.Blocks() as demo:
        gr.Markdown("""
# 🙋🏻‍♂️欢迎来到🌟Tonic 的🦆Qwen-VL-Chat🤩Bot!🚀
# 🙋🏻‍♂️Welcome toTonic's Qwen-VL-Chat Bot! 
该WebUI基于Qwen-VL-Chat,实现聊天机器人功能。 但我必须解决它的很多问题,也许我也能获得一些荣誉。
Qwen-VL-Chat 是一种多模式输入模型。 您可以使用此空间来测试当前模型 [qwen/Qwen-VL-Chat](https://huggingface.co/qwen/Qwen-VL-Chat) 您也可以使用 🧑🏻‍🚀qwen/Qwen-VL -通过克隆这个空间来聊天🚀。 🧬🔬🔍 只需点击这里:[重复空间](https://huggingface.co/spaces/Tonic1/VLChat?duplicate=true)
加入我们:🌟TeamTonic🌟总是在制作很酷的演示! 在 👻Discord 上加入我们活跃的构建者🛠️社区:[Discord](https://discord.gg/nXx5wbX9) 在 🤗Huggingface 上:[TeamTonic](https://huggingface.co/TeamTonic) 和 [MultiTransformer](https:/ /huggingface.co/MultiTransformer) 在 🌐Github 上:[Polytonic](https://github.com/tonic-ai) 并为 🌟 [PolyGPT](https://github.com/tonic-ai/polygpt-alpha) 做出贡献 )
This WebUI is based on Qwen-VL-Chat, implementing chatbot functionalities. Qwen-VL-Chat is a multimodal input model. You can use this Space to test out the current model [qwen/Qwen-VL-Chat](https://huggingface.co/qwen/Qwen-VL-Chat) You can also use  qwen/Qwen-VL-Chat🚀 by cloning this space.   Simply click here: [Duplicate Space](https://huggingface.co/spaces/Tonic1/VLChat?duplicate=true)
Join us:  TeamTonic  is always making cool demos! Join our active builder's community on  Discord: [Discord](https://discord.gg/nXx5wbX9) On  Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On  Github: [Polytonic](https://github.com/tonic-ai) & contribute to   [PolyGPT](https://github.com/tonic-ai/polygpt-alpha)
""")
        with gr.Row():
            with gr.Column(scale=1):
                chatbot = gr.Chatbot(label='🦆Qwen-VL-Chat')
            with gr.Column(scale=1):
                with gr.Row():
                    query = gr.Textbox(lines=2, label='Input', placeholder="Type your message here...")
                    submit_btn = gr.Button("📨Submit")
                with gr.Row():
                    file_upload = gr.UploadButton("⤴️Upload Image", file_types=["image"])
                    submit_file_btn = gr.Button("📩Submit Image")
                    regen_btn = gr.Button("♻️Regenerate")
                    empty_bin = gr.Button("🧼Clear History")
                task_history = gr.State([])

        submit_btn.click(
            fn=predict,
            inputs=[chatbot, task_history],
            outputs=[chatbot]
        )
        
        submit_file_btn.click(
            fn=handle_image_submission,
            inputs=[chatbot, task_history, file_upload],
            outputs=[chatbot, task_history]
        )

        regen_btn.click(
            fn=regenerate,
            inputs=[chatbot, task_history],
            outputs=[chatbot]
        )

        empty_bin.click(
            fn=reset_state,
            inputs=[task_history],
            outputs=[task_history],
        )

        query.submit(
            fn=add_text,
            inputs=[chatbot, task_history, query],
            outputs=[chatbot, task_history, query]
        )

        gr.Markdown("""
注意:此演示受 Qwen-VL 原始许可证的约束。我们强烈建议用户不要故意生成或允许他人故意生成有害内容,
包括仇恨言论、暴力、色情、欺骗等。(注:本演示受Qwen-VL许可协议约束,强烈建议用户不要传播或允许他人传播以下内容,包括但不限于仇恨言论、暴力、色情、欺诈相关的有害信息 .)
Note: This demo is governed by the original license of Qwen-VL. We strongly advise users not to knowingly generate or allow others to knowingly generate harmful content,
including hate speech, violence, pornography, deception, etc. (Note: This demo is subject to the license agreement of Qwen-VL. We strongly advise users not to disseminate or allow others to disseminate the following content, including but not limited to hate speech, violence, pornography, and fraud-related harmful information.)
""")

    demo.queue().launch()


def main():
    args = _get_args()
    model, tokenizer = _load_model_tokenizer(args)
    _launch_demo(args, model, tokenizer)

if __name__ == '__main__':
    main()