File size: 13,194 Bytes
70a42a8 3eb144e 70a42a8 374a6d8 70a42a8 36c12ab 70a42a8 3eb144e 0617850 3eb144e 0617850 70a42a8 5fbed6e 70a42a8 883e871 36c12ab baace61 883e871 70a42a8 883e871 7e8c4e1 2e60cd2 3eb144e 70a42a8 374a6d8 70a42a8 b5ca7ca 6f1dcd6 70a42a8 b5ca7ca 6f1dcd6 70a42a8 2e60cd2 70a42a8 2e60cd2 70a42a8 2e60cd2 70a42a8 2e60cd2 70a42a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 |
from modelscope import AutoModelForCausalLM, AutoTokenizer, GenerationConfig, snapshot_download
from argparse import ArgumentParser
from pathlib import Path
import shutil
import copy
import gradio as gr
import os
import re
import secrets
import tempfile
#GlobalVariables
os.environ['CUDA_VISIBLE_DEVICES'] = '0,1'
DEFAULT_CKPT_PATH = 'qwen/Qwen-VL-Chat'
REVISION = 'v1.0.4'
BOX_TAG_PATTERN = r"<box>([\s\S]*?)</box>"
PUNCTUATION = "!?。"#$%&'()*+,-/:;<=>@[\]^_`{|}~⦅⦆「」、、〃》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏."
uploaded_file_dir = os.environ.get("GRADIO_TEMP_DIR") or str(Path(tempfile.gettempdir()) / "gradio")
tokenizer = None
model = None
def _get_args() -> ArgumentParser:
parser = ArgumentParser()
parser.add_argument("-c", "--checkpoint-path", type=str, default=DEFAULT_CKPT_PATH,
help="Checkpoint name or path, default to %(default)r")
parser.add_argument("--revision", type=str, default=REVISION)
parser.add_argument("--cpu-only", action="store_true", help="Run demo with CPU only")
parser.add_argument("--share", action="store_true", default=False,
help="Create a publicly shareable link for the interface.")
parser.add_argument("--inbrowser", action="store_true", default=False,
help="Automatically launch the interface in a new tab on the default browser.")
parser.add_argument("--server-port", type=int, default=8000,
help="Demo server port.")
parser.add_argument("--server-name", type=str, default="127.0.0.1",
help="Demo server name.")
args = parser.parse_args()
return args
def handle_image_submission(_chatbot, task_history, file) -> tuple:
if file is None:
return _chatbot, task_history
file_path = save_image(file, uploaded_file_dir)
history_item = ((file_path,), None)
_chatbot.append(history_item)
task_history.append(history_item)
return predict(_chatbot, task_history)
def _load_model_tokenizer(args) -> tuple:
global tokenizer, model
model_id = args.checkpoint_path
model_dir = snapshot_download(model_id, revision=args.revision)
tokenizer = AutoTokenizer.from_pretrained(
model_dir, trust_remote_code=True, resume_download=True,
)
if args.cpu_only:
device_map = "cpu"
else:
device_map = "auto"
model = AutoModelForCausalLM.from_pretrained(
model_dir,
device_map=device_map,
trust_remote_code=True,
bf16=True,
resume_download=True,
).eval()
model.generation_config = GenerationConfig.from_pretrained(
model_dir, trust_remote_code=True, resume_download=True,
)
return model, tokenizer
def _parse_text(text: str) -> str:
lines = text.split("\n")
lines = [line for line in lines if line != ""]
count = 0
for i, line in enumerate(lines):
if "```" in line:
count += 1
items = line.split("`")
if count % 2 == 1:
lines[i] = f'<pre><code class="language-{items[-1]}">'
else:
lines[i] = f"<br></code></pre>"
else:
if i > 0:
if count % 2 == 1:
line = line.replace("`", r"\`")
line = line.replace("<", "<")
line = line.replace(">", ">")
line = line.replace(" ", " ")
line = line.replace("*", "*")
line = line.replace("_", "_")
line = line.replace("-", "-")
line = line.replace(".", ".")
line = line.replace("!", "!")
line = line.replace("(", "(")
line = line.replace(")", ")")
line = line.replace("$", "$")
lines[i] = "<br>" + line
text = "".join(lines)
return text
def save_image(image_file, upload_dir: str) -> str:
Path(upload_dir).mkdir(parents=True, exist_ok=True)
filename = secrets.token_hex(10) + Path(image_file.name).suffix
file_path = Path(upload_dir) / filename
with open(image_file, "rb") as f_input, open(file_path, "wb") as f_output:
f_output.write(f_input.read())
return str(file_path)
def add_file(history, task_history, file):
if file is None:
return history, task_history
file_path = save_image(file)
history = history + [((file_path,), None)]
task_history = task_history + [((file_path,), None)]
return history, task_history
def predict(_chatbot, task_history) -> tuple:
if not _chatbot:
return _chatbot, task_history
chat_query, chat_response = _chatbot[-1]
print("predict called")
if isinstance(chat_query, tuple):
chat_query = chat_query[0]
query = [{'image': chat_query}]
else:
query = [{'text': _parse_text(chat_query)}]
inputs = tokenizer.from_list_format(query)
tokenized_inputs = tokenizer(inputs, return_tensors='pt')
tokenized_inputs = tokenized_inputs.to(model.device)
pred = model.generate(**tokenized_inputs)
response = tokenizer.decode(pred.cpu()[0], skip_special_tokens=False)
if 'image' in query[0]:
print("Model response:", response)
image = tokenizer.draw_bbox_on_latest_picture(response)
if image is not None:
image_path = save_image(image, uploaded_file_dir)
formatted_response = (chat_query, image_path)
else:
formatted_response = (chat_query, response)
else:
text_response = response.strip()
formatted_response = (chat_query, text_response)
_chatbot[-1] = formatted_response
if task_history:
task_history[-1] = formatted_response
else:
task_history.append(formatted_response)
return _chatbot, task_history
def save_uploaded_image(image_file, upload_dir):
if image is None:
return None
temp_dir = secrets.token_hex(20)
temp_dir = Path(uploaded_file_dir) / temp_dir
temp_dir.mkdir(exist_ok=True, parents=True)
name = f"tmp{secrets.token_hex(5)}.jpg"
filename = temp_dir / name
image.save(str(filename))
return str(filename)
def regenerate(_chatbot, task_history) -> list:
if not task_history:
return _chatbot
item = task_history[-1]
if item[1] is None:
return _chatbot
task_history[-1] = (item[0], None)
chatbot_item = _chatbot.pop(-1)
if chatbot_item[0] is None:
_chatbot[-1] = (_chatbot[-1][0], None)
else:
_chatbot.append((chatbot_item[0], None))
return predict(_chatbot, task_history)
def add_text(history, task_history, text) -> tuple:
if not text.strip():
return history, task_history, chatbot
if not any(isinstance(item[0], tuple) for item in history):
prompt = "Please upload and submit an image to get started."
history.append((prompt, None))
task_history.append((prompt, None))
chatbot.append(prompt)
return history, task_history, chatbot
task_text = text
if len(text) >= 2 and text[-1] in PUNCTUATION and text[-2] not in PUNCTUATION:
task_text = text[:-1]
history_item = (_parse_text(task_text), None)
history.append(history_item)
task_history.append(history_item)
return history, task_history, chatbot
def add_file(history, task_history, file):
if file is None:
return history, task_history # Return if no file is uploaded
file_path = file.name
history = history + [((file.name,), None)]
task_history = task_history + [((file.name,), None)]
return history, task_history
def reset_user_input():
return gr.update(value="")
def process_response(response: str) -> str:
response = response.replace("<ref>", "").replace(r"</ref>", "")
response = re.sub(BOX_TAG_PATTERN, "", response)
return response
def process_history_for_model(task_history) -> list:
processed_history = []
for query, response in task_history:
if isinstance(query, tuple):
query = {'image': query[0]}
else:
query = {'text': query}
response = response or ""
processed_history.append((query, response))
return processed_history
def reset_state(task_history) -> list:
task_history.clear()
return []
def _launch_demo(args, model, tokenizer):
uploaded_file_dir = os.environ.get("GRADIO_TEMP_DIR") or str(
Path(tempfile.gettempdir()) / "gradio"
)
with gr.Blocks() as demo:
gr.Markdown("""
# 🙋🏻♂️欢迎来到🌟Tonic 的🦆Qwen-VL-Chat🤩Bot!🚀
# 🙋🏻♂️Welcome toTonic's Qwen-VL-Chat Bot!
该WebUI基于Qwen-VL-Chat,实现聊天机器人功能。 但我必须解决它的很多问题,也许我也能获得一些荣誉。
Qwen-VL-Chat 是一种多模式输入模型。 您可以使用此空间来测试当前模型 [qwen/Qwen-VL-Chat](https://huggingface.co/qwen/Qwen-VL-Chat) 您也可以使用 🧑🏻🚀qwen/Qwen-VL -通过克隆这个空间来聊天🚀。 🧬🔬🔍 只需点击这里:[重复空间](https://huggingface.co/spaces/Tonic1/VLChat?duplicate=true)
加入我们:🌟TeamTonic🌟总是在制作很酷的演示! 在 👻Discord 上加入我们活跃的构建者🛠️社区:[Discord](https://discord.gg/nXx5wbX9) 在 🤗Huggingface 上:[TeamTonic](https://huggingface.co/TeamTonic) 和 [MultiTransformer](https:/ /huggingface.co/MultiTransformer) 在 🌐Github 上:[Polytonic](https://github.com/tonic-ai) 并为 🌟 [PolyGPT](https://github.com/tonic-ai/polygpt-alpha) 做出贡献 )
This WebUI is based on Qwen-VL-Chat, implementing chatbot functionalities. Qwen-VL-Chat is a multimodal input model. You can use this Space to test out the current model [qwen/Qwen-VL-Chat](https://huggingface.co/qwen/Qwen-VL-Chat) You can also use qwen/Qwen-VL-Chat🚀 by cloning this space. Simply click here: [Duplicate Space](https://huggingface.co/spaces/Tonic1/VLChat?duplicate=true)
Join us: TeamTonic is always making cool demos! Join our active builder's community on Discord: [Discord](https://discord.gg/nXx5wbX9) On Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On Github: [Polytonic](https://github.com/tonic-ai) & contribute to [PolyGPT](https://github.com/tonic-ai/polygpt-alpha)
""")
with gr.Row():
with gr.Column(scale=1):
chatbot = gr.Chatbot(label='🦆Qwen-VL-Chat')
with gr.Column(scale=1):
with gr.Row():
query = gr.Textbox(lines=2, label='Input', placeholder="Type your message here...")
submit_btn = gr.Button("📨Submit")
with gr.Row():
file_upload = gr.UploadButton("⤴️Upload Image", file_types=["image"])
submit_file_btn = gr.Button("📩Submit Image")
regen_btn = gr.Button("♻️Regenerate")
empty_bin = gr.Button("🧼Clear History")
task_history = gr.State([])
submit_btn.click(
fn=predict,
inputs=[chatbot, task_history],
outputs=[chatbot]
)
submit_file_btn.click(
fn=handle_image_submission,
inputs=[chatbot, task_history, file_upload],
outputs=[chatbot, task_history]
)
regen_btn.click(
fn=regenerate,
inputs=[chatbot, task_history],
outputs=[chatbot]
)
empty_bin.click(
fn=reset_state,
inputs=[task_history],
outputs=[task_history],
)
query.submit(
fn=add_text,
inputs=[chatbot, task_history, query],
outputs=[chatbot, task_history, query]
)
gr.Markdown("""
注意:此演示受 Qwen-VL 原始许可证的约束。我们强烈建议用户不要故意生成或允许他人故意生成有害内容,
包括仇恨言论、暴力、色情、欺骗等。(注:本演示受Qwen-VL许可协议约束,强烈建议用户不要传播或允许他人传播以下内容,包括但不限于仇恨言论、暴力、色情、欺诈相关的有害信息 .)
Note: This demo is governed by the original license of Qwen-VL. We strongly advise users not to knowingly generate or allow others to knowingly generate harmful content,
including hate speech, violence, pornography, deception, etc. (Note: This demo is subject to the license agreement of Qwen-VL. We strongly advise users not to disseminate or allow others to disseminate the following content, including but not limited to hate speech, violence, pornography, and fraud-related harmful information.)
""")
demo.queue().launch()
def main():
args = _get_args()
model, tokenizer = _load_model_tokenizer(args)
_launch_demo(args, model, tokenizer)
if __name__ == '__main__':
main() |