Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -16,16 +16,14 @@ import uuid
|
|
16 |
|
17 |
|
18 |
welcome_message = """
|
19 |
-
# 👋🏻Welcome to ⚕🗣️😷
|
20 |
|
21 |
-
🗣️📝 This is an
|
22 |
|
23 |
-
### How To Use ⚕🗣️😷MultiMed⚕:
|
24 |
|
25 |
-
🗣️📝Interact with ⚕🗣️😷MultiMed⚕ in any language using image, audio or text
|
26 |
-
|
27 |
-
📚🌟💼 that uses [Tonic/stablemed](https://huggingface.co/Tonic/stablemed) and [adept/fuyu-8B](https://huggingface.co/adept/fuyu-8b) with [Vectara](https://huggingface.co/vectara) embeddings + retrieval w/ [Facebook/Seamless-m4t](https://huggingface.co/facebook/hf-seamless-m4t-large) for audio translation & accessibility.
|
28 |
-
do [get in touch](https://discord.gg/GWpVpekp). You can also use 😷MultiMed⚕️ on your own data & in your own way by cloning this space. 🧬🔬🔍 Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/TeamTonic/MultiMed?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3>
|
29 |
### Join us :
|
30 |
|
31 |
🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community on 👻Discord: [Discord](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Polytonic](https://github.com/tonic-ai) & contribute to 🌟 [PolyGPT](https://github.com/tonic-ai/polygpt-alpha)"
|
@@ -75,7 +73,7 @@ languages = {
|
|
75 |
# Global variables to hold component references
|
76 |
components = {}
|
77 |
dotenv.load_dotenv()
|
78 |
-
seamless_client = Client("facebook/
|
79 |
HuggingFace_Token = os.getenv("HuggingFace_Token")
|
80 |
hf_token = os.getenv("HuggingFace_Token")
|
81 |
base_model_id = os.getenv('BASE_MODEL_ID', 'default_base_model_id')
|
@@ -170,99 +168,51 @@ def save_image(image_input, output_dir="saved_images"):
|
|
170 |
raise ValueError("Invalid image input type")
|
171 |
|
172 |
def process_image(image_file_path):
|
173 |
-
client = Client("https://
|
174 |
-
|
175 |
-
"""
|
176 |
-
Process the image using the Gradio client.
|
177 |
-
"""
|
178 |
try:
|
179 |
-
|
180 |
-
|
181 |
-
image_file_path,
|
182 |
-
|
183 |
-
fn_index=2 # Function index for the Gradio model
|
184 |
)
|
185 |
return result
|
186 |
except Exception as e:
|
187 |
return f"Error occurred during image processing: {e}"
|
|
|
188 |
|
189 |
-
def process_speech(input_language, audio_input):
|
190 |
-
"""
|
191 |
-
processing sound using seamless_m4t
|
192 |
-
"""
|
193 |
if audio_input is None:
|
194 |
-
return "
|
195 |
-
print(f"audio : {audio_input}")
|
196 |
-
print(f"audio type : {type(audio_input)}")
|
197 |
-
out = seamless_client.predict(
|
198 |
-
"S2TT",
|
199 |
-
"file",
|
200 |
-
None,
|
201 |
-
audio_input,
|
202 |
-
"",
|
203 |
-
input_language,
|
204 |
-
"English",
|
205 |
-
api_name="/run",
|
206 |
-
)
|
207 |
-
out = out[1] # get the text
|
208 |
-
try:
|
209 |
-
return f"{out}"
|
210 |
-
except Exception as e:
|
211 |
-
return f"{e}"
|
212 |
-
|
213 |
-
|
214 |
-
def is_base64(s):
|
215 |
-
try:
|
216 |
-
return base64.b64encode(base64.b64decode(s)) == s.encode()
|
217 |
-
except Exception:
|
218 |
-
return False
|
219 |
-
|
220 |
-
def convert_text_to_speech(input_text: str, source_language: str, target_language: str) -> tuple[str, str]:
|
221 |
-
client = Client("https://facebook-seamless-m4t.hf.space/--replicas/8cllp/")
|
222 |
-
|
223 |
try:
|
224 |
-
#
|
225 |
-
result =
|
226 |
-
|
227 |
-
"text", # Since we are doing text-to-speech
|
228 |
-
None,
|
229 |
-
None,
|
230 |
-
input_text,
|
231 |
source_language,
|
232 |
target_language,
|
233 |
-
api_name="/
|
234 |
)
|
|
|
|
|
|
|
235 |
|
236 |
-
|
237 |
-
print("Raw API Response:", result)
|
238 |
-
|
239 |
-
# Initialize variables
|
240 |
-
translated_text = ""
|
241 |
-
audio_file_path = ""
|
242 |
-
|
243 |
-
# Process the result
|
244 |
-
if result:
|
245 |
-
for item in result:
|
246 |
-
if isinstance(item, str):
|
247 |
-
# Check if the item is a URL pointing to an audio file or a base64 encoded string
|
248 |
-
if any(ext in item.lower() for ext in ['.mp3', '.wav', '.ogg']) or is_base64(item):
|
249 |
-
if not audio_file_path: # Store only the first audio file path or base64 string
|
250 |
-
audio_file_path = item
|
251 |
-
else:
|
252 |
-
# Concatenate the translated text
|
253 |
-
translated_text += item + " "
|
254 |
|
255 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
256 |
|
|
|
257 |
except Exception as e:
|
258 |
-
print(f"Error in text-to-speech conversion: {str(e)}")
|
259 |
return None, f"Error in text-to-speech conversion: {str(e)}"
|
260 |
|
261 |
|
262 |
def query_vectara(text):
|
263 |
user_message = text
|
264 |
-
|
265 |
-
# Read authentication parameters from the .env file
|
266 |
customer_id = os.getenv('CUSTOMER_ID')
|
267 |
corpus_id = os.getenv('CORPUS_ID')
|
268 |
api_key = os.getenv('API_KEY')
|
@@ -371,53 +321,38 @@ def wrap_text(text, width=90):
|
|
371 |
wrapped_text = '\n'.join(wrapped_lines)
|
372 |
return wrapped_text
|
373 |
|
|
|
|
|
|
|
|
|
374 |
|
375 |
-
def multimodal_prompt(user_input, system_prompt="You are an expert medical analyst:"):
|
376 |
-
|
377 |
-
# Combine user input and system prompt
|
378 |
formatted_input = f"{user_input}{system_prompt}"
|
379 |
|
380 |
# Encode the input text
|
381 |
-
|
382 |
-
model_inputs = encodeds.to(device)
|
383 |
|
384 |
-
# Generate a response using the model
|
385 |
-
output =
|
386 |
-
**
|
387 |
max_length=512,
|
388 |
use_cache=True,
|
389 |
early_stopping=True,
|
390 |
-
|
391 |
-
eos_token_id=peft_model.config.eos_token_id,
|
392 |
-
pad_token_id=peft_model.config.eos_token_id,
|
393 |
temperature=0.1,
|
394 |
do_sample=True
|
395 |
)
|
396 |
|
397 |
-
# Decode the response
|
398 |
response_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
399 |
|
400 |
return response_text
|
401 |
|
402 |
-
|
403 |
-
# Instantiate the Tokenizer
|
404 |
-
tokenizer = AutoTokenizer.from_pretrained("stabilityai/stablelm-3b-4e1t", token=hf_token, trust_remote_code=True, padding_side="left")
|
405 |
-
# tokenizer = AutoTokenizer.from_pretrained("Tonic/stablemed", trust_remote_code=True, padding_side="left")
|
406 |
-
tokenizer.pad_token = tokenizer.eos_token
|
407 |
-
tokenizer.padding_side = 'left'
|
408 |
-
|
409 |
-
# Load the PEFT model
|
410 |
-
peft_config = PeftConfig.from_pretrained("Tonic/stablemed", token=hf_token)
|
411 |
-
peft_model = AutoModelForCausalLM.from_pretrained("stabilityai/stablelm-3b-4e1t", token=hf_token, trust_remote_code=True)
|
412 |
-
peft_model = PeftModel.from_pretrained(peft_model, "Tonic/stablemed", token=hf_token)
|
413 |
-
|
414 |
-
|
415 |
class ChatBot:
|
416 |
def __init__(self):
|
417 |
self.history = []
|
418 |
|
419 |
@staticmethod
|
420 |
-
def doctor(user_input, system_prompt="You are an expert medical analyst:"):
|
421 |
formatted_input = f"{system_prompt}{user_input}"
|
422 |
user_input_ids = tokenizer.encode(formatted_input, return_tensors="pt")
|
423 |
response = peft_model.generate(input_ids=user_input_ids, max_length=512, pad_token_id=tokenizer.eos_token_id)
|
@@ -428,13 +363,11 @@ class ChatBot:
|
|
428 |
bot = ChatBot()
|
429 |
|
430 |
|
431 |
-
def
|
432 |
system_prompt = "You are a medical instructor . Assess and describe the proper options to your students in minute detail. Propose a course of action for them to base their recommendations on based on your description."
|
433 |
response_text = bot.doctor(summary, system_prompt)
|
434 |
return response_text
|
435 |
|
436 |
-
|
437 |
-
# Main function to handle the Gradio interface logic
|
438 |
|
439 |
def process_and_query(input_language=None, audio_input=None, image_input=None, text_input=None):
|
440 |
try:
|
@@ -492,18 +425,18 @@ def process_and_query(input_language=None, audio_input=None, image_input=None, t
|
|
492 |
for source in sources_info:
|
493 |
markdown_output += f"* {source}\n"
|
494 |
|
495 |
-
# Process the summary with
|
496 |
-
final_response =
|
497 |
|
498 |
# Convert translated text to speech and get both audio file and text
|
499 |
-
target_language = "English"
|
500 |
audio_output, translated_text = convert_text_to_speech(final_response, target_language, input_language)
|
501 |
|
502 |
# Evaluate hallucination
|
503 |
hallucination_label = evaluate_hallucination(final_response, summary)
|
504 |
|
505 |
# Add final response and hallucination label to Markdown output
|
506 |
-
markdown_output += "\n### Processed Summary with
|
507 |
markdown_output += final_response + "\n"
|
508 |
markdown_output += "\n### Hallucination Evaluation\n"
|
509 |
markdown_output += f"* **Label**: {hallucination_label}\n"
|
@@ -517,12 +450,10 @@ def process_and_query(input_language=None, audio_input=None, image_input=None, t
|
|
517 |
|
518 |
|
519 |
def clear():
|
520 |
-
# Return default values for each component
|
521 |
return "English", None, None, "", None
|
522 |
|
523 |
|
524 |
def create_interface():
|
525 |
-
# with gr.Blocks(theme='ParityError/Anime') as iface:
|
526 |
with gr.Blocks(theme='ParityError/Anime') as interface:
|
527 |
# Display the welcome message
|
528 |
gr.Markdown(welcome_message)
|
|
|
16 |
|
17 |
|
18 |
welcome_message = """
|
19 |
+
# 👋🏻Welcome to ⚕🗣️😷TruEra - MultiMed ⚕🗣️😷
|
20 |
|
21 |
+
🗣️📝 This is an accessible and multimodal tool optimized using TruEra! We evaluated several configurations, prompts, and models to optimize this application.
|
22 |
|
23 |
+
### How To Use ⚕🗣️😷TruEra - MultiMed⚕:
|
24 |
|
25 |
+
🗣️📝Interact with ⚕🗣️😷TruEra - MultiMed⚕ in any language using image, audio or text. ⚕🗣️😷TruEra - MultiMed is an accessible application 📚🌟💼 that uses [Qwen/Qwen-1_8B-Chat](https://huggingface.co/Qwen/Qwen-1_8B-Chat) and [Tonic1/Official-Qwen-VL-Chat](https://huggingface.co/Qwen/Qwen-VL-Chat) with [Vectara](https://huggingface.co/vectara) embeddings + retrieval w/ [facebook/seamless-m4t-v2-large](https://huggingface.co/facebook/hf-seamless-m4t-large) for audio translation & accessibility.
|
26 |
+
do [get in touch](https://discord.gg/GWpVpekp). You can also use 😷TruEra MultiMed⚕️ on your own data & in your own way by cloning this space. 🧬🔬🔍 Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/TeamTonic/MultiMed?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3>
|
|
|
|
|
27 |
### Join us :
|
28 |
|
29 |
🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community on 👻Discord: [Discord](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Polytonic](https://github.com/tonic-ai) & contribute to 🌟 [PolyGPT](https://github.com/tonic-ai/polygpt-alpha)"
|
|
|
73 |
# Global variables to hold component references
|
74 |
components = {}
|
75 |
dotenv.load_dotenv()
|
76 |
+
seamless_client = Client("https://facebook-seamless-m4t-v2-large.hf.space/--replicas/j95rl/")
|
77 |
HuggingFace_Token = os.getenv("HuggingFace_Token")
|
78 |
hf_token = os.getenv("HuggingFace_Token")
|
79 |
base_model_id = os.getenv('BASE_MODEL_ID', 'default_base_model_id')
|
|
|
168 |
raise ValueError("Invalid image input type")
|
169 |
|
170 |
def process_image(image_file_path):
|
171 |
+
client = Client("https://tonic1-official-qwen-vl-chat.hf.space/--replicas/xhs6q/") # TruEra
|
|
|
|
|
|
|
|
|
172 |
try:
|
173 |
+
result = client.predict(
|
174 |
+
"Describe this image in detail, identify every detail in this image. Describe the image the best you can.", # TruEra
|
175 |
+
image_file_path,
|
176 |
+
fn_index=0
|
|
|
177 |
)
|
178 |
return result
|
179 |
except Exception as e:
|
180 |
return f"Error occurred during image processing: {e}"
|
181 |
+
def process_speech(audio_input, source_language, target_language="English"):
|
182 |
|
|
|
|
|
|
|
|
|
183 |
if audio_input is None:
|
184 |
+
return "No audio input provided."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
try:
|
186 |
+
# Predict using the client
|
187 |
+
result = seamless_client.predict(
|
188 |
+
audio_input, # File path of the audio
|
|
|
|
|
|
|
|
|
189 |
source_language,
|
190 |
target_language,
|
191 |
+
api_name="/s2tt"
|
192 |
)
|
193 |
+
return result
|
194 |
+
except Exception as e:
|
195 |
+
return f"Error in speech processing: {str(e)}"
|
196 |
|
197 |
+
def convert_text_to_speech(input_text, source_language, target_language):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
|
199 |
+
try:
|
200 |
+
result = seamless_client.predict(
|
201 |
+
input_text,
|
202 |
+
source_language,
|
203 |
+
target_language,
|
204 |
+
api_name="/t2st"
|
205 |
+
)
|
206 |
+
audio_file_path = result[0] if result else None
|
207 |
+
translated_text = result[1] if result else ""
|
208 |
|
209 |
+
return audio_file_path, translated_text
|
210 |
except Exception as e:
|
|
|
211 |
return None, f"Error in text-to-speech conversion: {str(e)}"
|
212 |
|
213 |
|
214 |
def query_vectara(text):
|
215 |
user_message = text
|
|
|
|
|
216 |
customer_id = os.getenv('CUSTOMER_ID')
|
217 |
corpus_id = os.getenv('CORPUS_ID')
|
218 |
api_key = os.getenv('API_KEY')
|
|
|
321 |
wrapped_text = '\n'.join(wrapped_lines)
|
322 |
return wrapped_text
|
323 |
|
324 |
+
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-1_8B-Chat", trust_remote_code=True) # TruEra
|
325 |
+
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-1_8B-Chat", device_map="auto", trust_remote_code=True).eval()
|
326 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
327 |
+
model.to(device)
|
328 |
|
329 |
+
def multimodal_prompt(user_input, system_prompt="You are an expert medical analyst:"): # TruEra
|
|
|
|
|
330 |
formatted_input = f"{user_input}{system_prompt}"
|
331 |
|
332 |
# Encode the input text
|
333 |
+
encoded_input = tokenizer(formatted_input, return_tensors="pt").to(device)
|
|
|
334 |
|
335 |
+
# Generate a response using the model
|
336 |
+
output = model.generate(
|
337 |
+
**encoded_input,
|
338 |
max_length=512,
|
339 |
use_cache=True,
|
340 |
early_stopping=True,
|
341 |
+
pad_token_id=tokenizer.eos_token_id,
|
|
|
|
|
342 |
temperature=0.1,
|
343 |
do_sample=True
|
344 |
)
|
345 |
|
|
|
346 |
response_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
347 |
|
348 |
return response_text
|
349 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
350 |
class ChatBot:
|
351 |
def __init__(self):
|
352 |
self.history = []
|
353 |
|
354 |
@staticmethod
|
355 |
+
def doctor(user_input, system_prompt="You are an expert medical analyst:"): # TruEra
|
356 |
formatted_input = f"{system_prompt}{user_input}"
|
357 |
user_input_ids = tokenizer.encode(formatted_input, return_tensors="pt")
|
358 |
response = peft_model.generate(input_ids=user_input_ids, max_length=512, pad_token_id=tokenizer.eos_token_id)
|
|
|
363 |
bot = ChatBot()
|
364 |
|
365 |
|
366 |
+
def process_summary_with_qwen(summary): # TruEra
|
367 |
system_prompt = "You are a medical instructor . Assess and describe the proper options to your students in minute detail. Propose a course of action for them to base their recommendations on based on your description."
|
368 |
response_text = bot.doctor(summary, system_prompt)
|
369 |
return response_text
|
370 |
|
|
|
|
|
371 |
|
372 |
def process_and_query(input_language=None, audio_input=None, image_input=None, text_input=None):
|
373 |
try:
|
|
|
425 |
for source in sources_info:
|
426 |
markdown_output += f"* {source}\n"
|
427 |
|
428 |
+
# Process the summary with Qwen
|
429 |
+
final_response = process_summary_with_qwen(summary)
|
430 |
|
431 |
# Convert translated text to speech and get both audio file and text
|
432 |
+
target_language = "English"
|
433 |
audio_output, translated_text = convert_text_to_speech(final_response, target_language, input_language)
|
434 |
|
435 |
# Evaluate hallucination
|
436 |
hallucination_label = evaluate_hallucination(final_response, summary)
|
437 |
|
438 |
# Add final response and hallucination label to Markdown output
|
439 |
+
markdown_output += "\n### Processed Summary with Qwen\n"
|
440 |
markdown_output += final_response + "\n"
|
441 |
markdown_output += "\n### Hallucination Evaluation\n"
|
442 |
markdown_output += f"* **Label**: {hallucination_label}\n"
|
|
|
450 |
|
451 |
|
452 |
def clear():
|
|
|
453 |
return "English", None, None, "", None
|
454 |
|
455 |
|
456 |
def create_interface():
|
|
|
457 |
with gr.Blocks(theme='ParityError/Anime') as interface:
|
458 |
# Display the welcome message
|
459 |
gr.Markdown(welcome_message)
|