Spaces:
Runtime error
Runtime error
File size: 2,950 Bytes
39dff4c 99914ec 4a0366f 39dff4c c6ddc86 4a0366f c6ddc86 39dff4c c6ddc86 39dff4c c6ddc86 39dff4c c6ddc86 39dff4c af86876 c6ddc86 4a0366f c6ddc86 4a0366f af86876 c6ddc86 4a0366f c6ddc86 39dff4c 9dd7ad1 ecc7d07 d9c4b56 ca860d3 39dff4c d9c4b56 da239a9 7afe812 9ed9d81 af86876 cf7f506 9af995d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
import gradio as gr
import requests
import json
from decouple import Config
# Function to interact with Vectara API
def query_vectara(question, chat_history, uploaded_file):
# Handle file upload to Vectara
customer_id = config('CUSTOMER_ID') # Read from .env file
corpus_id = config('CORPUS_ID') # Read from .env file
api_key = config('API_KEY') # Read from .env file
url = f"https://api.vectara.io/v1/upload?c={customer_id}&o={corpus_id}"
post_headers = {
"x-api-key": api_key,
"customer-id": customer_id
}
files = {
"file": (uploaded_file.name, uploaded_file),
"doc_metadata": (None, json.dumps({"metadata_key": "metadata_value"})), # Replace with your metadata
}
response = requests.post(url, files=files, verify=True, headers=post_headers)
if response.status_code == 200:
upload_status = "File uploaded successfully"
else:
upload_status = "Failed to upload the file"
# Get the user's message from the chat history
user_message = chat_history[-1][0]
query_body = {
"query": [
{
"query": user_message, # Use the user's message as the query
"start": 0,
"numResults": 10,
"corpusKey": [
{
"customerId": customer_id,
"corpusId": corpus_id,
"lexicalInterpolationConfig": {"lambda": 0.025}
}
]
}
]
}
api_endpoint = "https://api.vectara.io/v1/query"
return f"{upload_status}\n\nResponse from Vectara API: {response.text}"
# from vectara_retriever import VectaraRetriever # Assuming VectaraRetriever is in vectara_retriever.py
# Function to interact with Vectara API
# def query_vectara(question, chat_history, uploaded_file):
# # Handle file upload to Vectara
#
# # Get the user's message from the chat history
# user_message = chat_history[-1][0]
#
# # Create a VectaraRetriever instance
# retriever = VectaraRetriever(index=your_vectara_index) # Replace with your VectaraIndex instance
#
# # Create a QueryBundle with the user's message
# query_bundle = QueryBundle(query_str=user_message)
#
# # Retrieve the top k most similar nodes
# top_k_nodes = retriever._retrieve(query_bundle)
#
# # Format the nodes for display
# responses = "\n".join([f"{node.node.text} (score: {node.score})" for node in top_k_nodes])
#
# return f"{upload_status}\n\nResponse from Vectara API: {responses}"
# Create a Gradio ChatInterface with a text input, a file upload input, and a text output
iface = gr.Interface(
fn=query_vectara,
inputs=[gr.Textbox(label="Input Text"), gr.File(label="Upload a file")],
outputs=gr.Textbox(label="Output Text"),
title="Vectara Chatbot",
description="Ask me anything using the Vectara API!"
)
iface.launch() |