File size: 2,950 Bytes
39dff4c
 
 
99914ec
4a0366f
39dff4c
c6ddc86
4a0366f
 
 
 
c6ddc86
39dff4c
 
c6ddc86
 
39dff4c
 
c6ddc86
 
 
 
 
39dff4c
 
c6ddc86
39dff4c
af86876
c6ddc86
4a0366f
 
c6ddc86
4a0366f
 
 
 
 
 
 
af86876
 
 
 
 
 
 
 
 
c6ddc86
4a0366f
c6ddc86
39dff4c
9dd7ad1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ecc7d07
d9c4b56
ca860d3
39dff4c
d9c4b56
da239a9
7afe812
9ed9d81
af86876
cf7f506
9af995d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import gradio as gr
import requests
import json
from decouple import Config

# Function to interact with Vectara API
def query_vectara(question, chat_history, uploaded_file):
    # Handle file upload to Vectara
    customer_id = config('CUSTOMER_ID')  # Read from .env file
    corpus_id = config('CORPUS_ID')  # Read from .env file
    api_key = config('API_KEY')  # Read from .env file
    url = f"https://api.vectara.io/v1/upload?c={customer_id}&o={corpus_id}"

    post_headers = {
        "x-api-key": api_key,
        "customer-id": customer_id
    }

    files = {
        "file": (uploaded_file.name, uploaded_file),
        "doc_metadata": (None, json.dumps({"metadata_key": "metadata_value"})),  # Replace with your metadata
    }
    response = requests.post(url, files=files, verify=True, headers=post_headers)

    if response.status_code == 200:
        upload_status = "File uploaded successfully"
    else:
        upload_status = "Failed to upload the file"

    # Get the user's message from the chat history
    user_message = chat_history[-1][0]

    query_body = {
        "query": [
            {
                "query": user_message,  # Use the user's message as the query
                "start": 0,
                "numResults": 10,
                "corpusKey": [
                    {
                        "customerId": customer_id,
                        "corpusId": corpus_id,
                        "lexicalInterpolationConfig": {"lambda": 0.025}
                    }
                ]
            }
        ]
    }

    api_endpoint = "https://api.vectara.io/v1/query"
    return f"{upload_status}\n\nResponse from Vectara API: {response.text}"

# from vectara_retriever import VectaraRetriever  # Assuming VectaraRetriever is in vectara_retriever.py

# Function to interact with Vectara API
# def query_vectara(question, chat_history, uploaded_file):
#    # Handle file upload to Vectara
#
#    # Get the user's message from the chat history
#    user_message = chat_history[-1][0]
#
#    # Create a VectaraRetriever instance
#    retriever = VectaraRetriever(index=your_vectara_index)  # Replace with your VectaraIndex instance
#
#    # Create a QueryBundle with the user's message
#    query_bundle = QueryBundle(query_str=user_message)
#
#    # Retrieve the top k most similar nodes
#    top_k_nodes = retriever._retrieve(query_bundle)
#
#    # Format the nodes for display
#    responses = "\n".join([f"{node.node.text} (score: {node.score})" for node in top_k_nodes])
#
#    return f"{upload_status}\n\nResponse from Vectara API: {responses}"
    
# Create a Gradio ChatInterface with a text input, a file upload input, and a text output
iface = gr.Interface(
    fn=query_vectara,
    inputs=[gr.Textbox(label="Input Text"), gr.File(label="Upload a file")],
    outputs=gr.Textbox(label="Output Text"),
    title="Vectara Chatbot",
    description="Ask me anything using the Vectara API!"
)

iface.launch()