File size: 8,062 Bytes
9ff18cc 2e98411 9ff18cc d43a99c ab4ecf4 6e49c29 9ff18cc 50d589f db5b405 b70a398 50d589f 390738c 9ff18cc 97d635c f8c306d 9ff18cc 68f6e9e 9ff18cc a926d81 6ea968f a926d81 91aaa3e 9ff18cc f8c306d 9ff18cc f8c306d 9ff18cc f8c306d 9ff18cc cf9bb0c 5d8f4a6 9ff18cc cf9bb0c deda174 9ff18cc f8c306d c7eff8d 9ff18cc 68f6e9e 9ff18cc f8c306d 9ff18cc f8c306d 9ff18cc 49774f4 9ff18cc 97d635c 9ff18cc f8c306d 9ff18cc f8c306d 9ff18cc 85b4edc 9ff18cc f8c306d 9ff18cc 85b4edc 9ff18cc 173da86 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
from transformers import AutoModelForCausalLM, AutoTokenizer
from tokenization_yi import YiTokenizer
import torch
import os
import gradio as gr
import sentencepiece
model_id = "01-ai/Yi-34B-200K"
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:50'
device = "cuda" if torch.cuda.is_available() else "cpu"
tokenizer = YiTokenizer(vocab_file="./tokenizer.model")
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="device", load_in_8bit=True, trust_remote_code=True)
# model = AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True)
# model = model.to(device)
def run(message, chat_history, max_new_tokens=4056, temperature=3.5, top_p=0.9, top_k=800):
prompt = get_prompt(message, chat_history)
input_ids = tokenizer.encode(prompt, return_tensors='pt')
input_ids = input_ids.to(model.device)
response_ids = model.generate(
input_ids,
max_length=max_new_tokens + input_ids.shape[1],
temperature=temperature,
top_p=top_p,
top_k=top_k,
pad_token_id=tokenizer.eos_token_id,
do_sample=True
)
response = tokenizer.decode(response_ids[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
return response
def get_prompt(message, chat_history):
texts = []
do_strip = False
for user_input, response in chat_history:
user_input = user_input.strip() if do_strip else user_input
do_strip = True
texts.append(f" {response.strip()} {user_input} ")
message = message.strip() if do_strip else message
texts.append(f"{message}")
return ''.join(texts)
DESCRIPTION = """
# 👋🏻Welcome to 🙋🏻♂️Tonic's🧑🏻🚀YI-200K🚀"
You can use this Space to test out the current model [Tonic/YI](https://huggingface.co/01-ai/Yi-34B)
You can also use 🧑🏻🚀YI-200K🚀 by cloning this space. 🧬🔬🔍 Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/Tonic1/YiTonic?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3>
Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community on 👻Discord: [Discord](https://discord.gg/nXx5wbX9) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Polytonic](https://github.com/tonic-ai) & contribute to 🌟 [PolyGPT](https://github.com/tonic-ai/polygpt-alpha)
"""
MAX_MAX_NEW_TOKENS = 4056
DEFAULT_MAX_NEW_TOKENS = 1256
MAX_INPUT_TOKEN_LENGTH = 120000
def clear_and_save_textbox(message): return '', message
def display_input(message, history=[]):
history.append((message, ''))
return history
def delete_prev_fn(history=[]):
try:
message, _ = history.pop()
except IndexError:
message = ''
return history, message or ''
def generate(message, history_with_input, max_new_tokens, temperature, top_p, top_k):
if int(max_new_tokens) > MAX_MAX_NEW_TOKENS:
raise ValueError
history = history_with_input[:-1]
response = run(message, history, max_new_tokens, temperature, top_p, top_k)
yield history + [(message, response)]
def process_example(message):
generator = generate(message, [], 1024, 2.5, 0.95, 900)
for x in generator:
pass
return '', x
def check_input_token_length(message, chat_history):
input_token_length = len(message) + len(chat_history)
if input_token_length > MAX_INPUT_TOKEN_LENGTH:
raise gr.Error(f"The accumulated input is too long ({input_token_length} > {MAX_INPUT_TOKEN_LENGTH}). Clear your chat history and try again.")
with gr.Blocks(theme='ParityError/Anime') as demo:
gr.Markdown(DESCRIPTION)
with gr.Group():
chatbot = gr.Chatbot(label='TonicYi-30B-200K')
with gr.Row():
textbox = gr.Textbox(
container=False,
show_label=False,
placeholder='As the dawn approached, they leant in and said',
scale=10
)
submit_button = gr.Button('Submit', variant='primary', scale=1, min_width=0)
with gr.Row():
retry_button = gr.Button('Retry', variant='secondary')
undo_button = gr.Button('Undo', variant='secondary')
clear_button = gr.Button('Clear', variant='secondary')
saved_input = gr.State()
with gr.Accordion(label='Advanced options', open=False):
# system_prompt = gr.Textbox(label='System prompt', value=DEFAULT_SYSTEM_PROMPT, lines=5, interactive=False)
max_new_tokens = gr.Slider(label='Max New Tokens', minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
temperature = gr.Slider(label='Temperature', minimum=0.1, maximum=4.0, step=0.1, value=0.1)
top_p = gr.Slider(label='Top-P (nucleus sampling)', minimum=0.05, maximum=1.0, step=0.05, value=0.9)
top_k = gr.Slider(label='Top-K', minimum=1, maximum=1000, step=1, value=10)
textbox.submit(
fn=clear_and_save_textbox,
inputs=textbox,
outputs=[textbox, saved_input],
api_name=False,
queue=False,
).then(
fn=display_input,
inputs=[saved_input, chatbot],
outputs=chatbot,
api_name=False,
queue=False,
).then(
fn=check_input_token_length,
inputs=[saved_input, chatbot],
api_name=False,
queue=False,
).success(
fn=generate,
inputs=[
saved_input,
chatbot,
max_new_tokens,
temperature,
top_p,
top_k,
],
outputs=chatbot,
api_name="Generate",
)
button_event_preprocess = submit_button.click(
fn=clear_and_save_textbox,
inputs=textbox,
outputs=[textbox, saved_input],
api_name=False,
queue=False,
).then(
fn=display_input,
inputs=[saved_input, chatbot],
outputs=chatbot,
api_name=False,
queue=False,
).then(
fn=check_input_token_length,
inputs=[saved_input, chatbot],
api_name=False,
queue=False,
).success(
fn=generate,
inputs=[
saved_input,
chatbot,
max_new_tokens,
temperature,
top_p,
top_k,
],
outputs=chatbot,
api_name="Cgenerate",
)
retry_button.click(
fn=delete_prev_fn,
inputs=chatbot,
outputs=[chatbot, saved_input],
api_name=False,
queue=False,
).then(
fn=display_input,
inputs=[saved_input, chatbot],
outputs=chatbot,
api_name=False,
queue=False,
).then(
fn=generate,
inputs=[
saved_input,
chatbot,
max_new_tokens,
temperature,
top_p,
top_k,
],
outputs=chatbot,
api_name=False,
)
undo_button.click(
fn=delete_prev_fn,
inputs=chatbot,
outputs=[chatbot, saved_input],
api_name=False,
queue=False,
).then(
fn=lambda x: x,
inputs=[saved_input],
outputs=textbox,
api_name=False,
queue=False,
)
clear_button.click(
fn=lambda: ([], ''),
outputs=[chatbot, saved_input],
queue=False,
api_name=False,
)
demo.queue().launch(show_api=True) |