File size: 8,062 Bytes
9ff18cc
2e98411
9ff18cc
d43a99c
 
ab4ecf4
 
6e49c29
9ff18cc
50d589f
 
db5b405
b70a398
50d589f
390738c
 
9ff18cc
97d635c
f8c306d
9ff18cc
68f6e9e
9ff18cc
 
 
a926d81
 
 
6ea968f
a926d81
91aaa3e
9ff18cc
 
 
 
 
f8c306d
 
9ff18cc
 
 
 
 
f8c306d
9ff18cc
f8c306d
9ff18cc
 
cf9bb0c
 
 
5d8f4a6
 
9ff18cc
cf9bb0c
deda174
 
 
9ff18cc
 
 
 
 
 
 
 
 
 
 
 
 
 
f8c306d
c7eff8d
9ff18cc
 
 
68f6e9e
 
 
9ff18cc
 
f8c306d
9ff18cc
 
 
 
f8c306d
9ff18cc
 
 
 
 
 
 
 
 
 
49774f4
9ff18cc
 
 
 
97d635c
9ff18cc
 
 
 
 
 
 
 
 
 
 
 
f8c306d
9ff18cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8c306d
9ff18cc
 
 
 
 
 
 
 
 
 
 
 
 
85b4edc
9ff18cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8c306d
9ff18cc
 
 
 
 
 
 
 
 
 
 
 
 
85b4edc
9ff18cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
173da86
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
from transformers import AutoModelForCausalLM, AutoTokenizer
from tokenization_yi import YiTokenizer
import torch
import os
import gradio as gr
import sentencepiece

model_id = "01-ai/Yi-34B-200K"

os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:50'
device = "cuda" if torch.cuda.is_available() else "cpu"

tokenizer = YiTokenizer(vocab_file="./tokenizer.model")
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="device", load_in_8bit=True, trust_remote_code=True)
# model = AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True)
# model = model.to(device)

def run(message, chat_history, max_new_tokens=4056, temperature=3.5, top_p=0.9, top_k=800):
    prompt = get_prompt(message, chat_history)
    input_ids = tokenizer.encode(prompt, return_tensors='pt')
    input_ids = input_ids.to(model.device)
    response_ids = model.generate(
        input_ids,
        max_length=max_new_tokens + input_ids.shape[1],
        temperature=temperature,  
        top_p=top_p,              
        top_k=top_k,              
        pad_token_id=tokenizer.eos_token_id,
        do_sample=True            

    )

    response = tokenizer.decode(response_ids[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
    return response

def get_prompt(message, chat_history):
    texts = []

    do_strip = False
    for user_input, response in chat_history:
        user_input = user_input.strip() if do_strip else user_input
        do_strip = True
        texts.append(f" {response.strip()} {user_input} ")
    message = message.strip() if do_strip else message
    texts.append(f"{message}")
    return ''.join(texts)

DESCRIPTION = """
# 👋🏻Welcome to 🙋🏻‍♂️Tonic's🧑🏻‍🚀YI-200K🚀"
You can use this Space to test out the current model [Tonic/YI](https://huggingface.co/01-ai/Yi-34B)
You can also use 🧑🏻‍🚀YI-200K🚀 by cloning this space. 🧬🔬🔍 Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/Tonic1/YiTonic?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3> 
Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community on 👻Discord: [Discord](https://discord.gg/nXx5wbX9) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Polytonic](https://github.com/tonic-ai) & contribute to 🌟 [PolyGPT](https://github.com/tonic-ai/polygpt-alpha)
"""

MAX_MAX_NEW_TOKENS = 4056
DEFAULT_MAX_NEW_TOKENS = 1256
MAX_INPUT_TOKEN_LENGTH = 120000

def clear_and_save_textbox(message): return '', message

def display_input(message, history=[]):
    history.append((message, ''))
    return history

def delete_prev_fn(history=[]):
    try:
        message, _ = history.pop()
    except IndexError:
        message = ''
    return history, message or ''

def generate(message, history_with_input, max_new_tokens, temperature, top_p, top_k):
    if int(max_new_tokens) > MAX_MAX_NEW_TOKENS:
        raise ValueError

    history = history_with_input[:-1]
    response = run(message, history, max_new_tokens, temperature, top_p, top_k)
    yield history + [(message, response)]


def process_example(message):
    generator = generate(message, [], 1024, 2.5, 0.95, 900)
    for x in generator:
        pass
    return '', x

def check_input_token_length(message, chat_history):
    input_token_length = len(message) + len(chat_history)
    if input_token_length > MAX_INPUT_TOKEN_LENGTH:
        raise gr.Error(f"The accumulated input is too long ({input_token_length} > {MAX_INPUT_TOKEN_LENGTH}). Clear your chat history and try again.")

with gr.Blocks(theme='ParityError/Anime') as demo:
    gr.Markdown(DESCRIPTION)


    
    with gr.Group():
        chatbot = gr.Chatbot(label='TonicYi-30B-200K')
        with gr.Row():
            textbox = gr.Textbox(
                container=False,
                show_label=False,
                placeholder='As the dawn approached, they leant in and said',
                scale=10
            )
            submit_button = gr.Button('Submit', variant='primary', scale=1, min_width=0)

    with gr.Row():
        retry_button = gr.Button('Retry', variant='secondary')
        undo_button = gr.Button('Undo', variant='secondary')
        clear_button = gr.Button('Clear', variant='secondary')

    saved_input = gr.State()

    with gr.Accordion(label='Advanced options', open=False):
#       system_prompt = gr.Textbox(label='System prompt', value=DEFAULT_SYSTEM_PROMPT, lines=5, interactive=False)
        max_new_tokens = gr.Slider(label='Max New Tokens', minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
        temperature = gr.Slider(label='Temperature', minimum=0.1, maximum=4.0, step=0.1, value=0.1)
        top_p = gr.Slider(label='Top-P (nucleus sampling)', minimum=0.05, maximum=1.0, step=0.05, value=0.9)
        top_k = gr.Slider(label='Top-K', minimum=1, maximum=1000, step=1, value=10)

    textbox.submit(
        fn=clear_and_save_textbox,
        inputs=textbox,
        outputs=[textbox, saved_input],
        api_name=False,
        queue=False,
    ).then(
        fn=display_input,
        inputs=[saved_input, chatbot],
        outputs=chatbot,
        api_name=False,
        queue=False,
    ).then(
        fn=check_input_token_length,
        inputs=[saved_input, chatbot],
        api_name=False,
        queue=False,
    ).success(
        fn=generate,
        inputs=[
            saved_input,
            chatbot,
            max_new_tokens,
            temperature,
            top_p,
            top_k,
        ],
        outputs=chatbot,
        api_name="Generate",
    )

    button_event_preprocess = submit_button.click(
        fn=clear_and_save_textbox,
        inputs=textbox,
        outputs=[textbox, saved_input],
        api_name=False,
        queue=False,
    ).then(
        fn=display_input,
        inputs=[saved_input, chatbot],
        outputs=chatbot,
        api_name=False,
        queue=False,
    ).then(
        fn=check_input_token_length,
        inputs=[saved_input, chatbot],
        api_name=False,
        queue=False,
    ).success(
        fn=generate,
        inputs=[
            saved_input,
            chatbot,
            max_new_tokens,
            temperature,
            top_p,
            top_k,
        ],
        outputs=chatbot,
        api_name="Cgenerate",
    )

    retry_button.click(
        fn=delete_prev_fn,
        inputs=chatbot,
        outputs=[chatbot, saved_input],
        api_name=False,
        queue=False,
    ).then(
        fn=display_input,
        inputs=[saved_input, chatbot],
        outputs=chatbot,
        api_name=False,
        queue=False,
    ).then(
        fn=generate,
        inputs=[
            saved_input,
            chatbot,
            max_new_tokens,
            temperature,
            top_p,
            top_k,
        ],
        outputs=chatbot,
        api_name=False,
    )

    undo_button.click(
        fn=delete_prev_fn,
        inputs=chatbot,
        outputs=[chatbot, saved_input],
        api_name=False,
        queue=False,
    ).then(
        fn=lambda x: x,
        inputs=[saved_input],
        outputs=textbox,
        api_name=False,
        queue=False,
    )

    clear_button.click(
        fn=lambda: ([], ''),
        outputs=[chatbot, saved_input],
        queue=False,
        api_name=False,
    )

demo.queue().launch(show_api=True)