ThomasBlumet commited on
Commit
f694567
·
1 Parent(s): 2616382

change model

Browse files
Files changed (1) hide show
  1. app.py +13 -13
app.py CHANGED
@@ -1,7 +1,7 @@
1
  from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
2
  from transformers.utils import logging
3
  import gradio as gr
4
- #import spaces
5
 
6
  # Define the logger instance for the transformers library
7
  logger = logging.get_logger("transformers")
@@ -14,23 +14,23 @@ model = AutoModelForCausalLM.from_pretrained(model_name,device_map="auto",trust_
14
 
15
  #transfer model on GPU
16
  #model.to("cuda")
17
- pipe = pipeline("text-generation", model=model_name, tokenizer=tokenizer,
18
- max_new_tokens=512,
19
- do_sample=True,
20
- temperature=0.7,
21
- top_p=0.95,
22
- top_k=40,
23
- repetition_penalty=1.1)
24
 
25
  # Generate text using the model and tokenizer
26
- #@spaces.GPU(duration=60)
27
  def generate_text(input_text):
28
- #input_ids = tokenizer.encode(input_text, return_tensors="pt")#.to("cuda")
29
  #attention_mask = input_ids.ne(tokenizer.pad_token_id).long()
30
- #output = model.generate(input_ids, max_new_tokens=512, top_k=50, top_p=0.95, temperature=0.7, do_sample=True)# attention_mask=attention_mask, max_length=100, num_return_sequences=1, no_repeat_ngram_size=2, top_k=50, top_p=0.95, temperature=0.7, do_sample=True)
31
  #output = model.generate(input_ids) #, attention_mask=attention_mask, max_length=100, num_return_sequences=1, no_repeat_ngram_size=2, top_k=50, top_p=0.95, temperature=0.7, do_sample=True)
32
- #return tokenizer.decode(output[0])
33
- return pipe(input_text)[0]["generated_text"]
34
 
35
  interface = gr.Interface(fn=generate_text, inputs="text", outputs="text",title="TeLLMyStory",description="Enter your story idea and the model will generate the story based on it.")
36
  interface.launch()
 
1
  from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
2
  from transformers.utils import logging
3
  import gradio as gr
4
+ import spaces
5
 
6
  # Define the logger instance for the transformers library
7
  logger = logging.get_logger("transformers")
 
14
 
15
  #transfer model on GPU
16
  #model.to("cuda")
17
+ # pipe = pipeline("text-generation", model=model_name, tokenizer=tokenizer,
18
+ # max_new_tokens=512,
19
+ # do_sample=True,
20
+ # temperature=0.7,
21
+ # top_p=0.95,
22
+ # top_k=40,
23
+ # repetition_penalty=1.1)
24
 
25
  # Generate text using the model and tokenizer
26
+ @spaces.GPU(duration=60)
27
  def generate_text(input_text):
28
+ input_ids = tokenizer.encode(input_text, return_tensors="pt")#.to("cuda")
29
  #attention_mask = input_ids.ne(tokenizer.pad_token_id).long()
30
+ output = model.generate(input_ids, max_new_tokens=512, top_k=50, top_p=0.95, temperature=0.7, do_sample=True)# attention_mask=attention_mask, max_length=100, num_return_sequences=1, no_repeat_ngram_size=2, top_k=50, top_p=0.95, temperature=0.7, do_sample=True)
31
  #output = model.generate(input_ids) #, attention_mask=attention_mask, max_length=100, num_return_sequences=1, no_repeat_ngram_size=2, top_k=50, top_p=0.95, temperature=0.7, do_sample=True)
32
+ return tokenizer.decode(output[0])
33
+ #return pipe(input_text)[0]["generated_text"]
34
 
35
  interface = gr.Interface(fn=generate_text, inputs="text", outputs="text",title="TeLLMyStory",description="Enter your story idea and the model will generate the story based on it.")
36
  interface.launch()