ThomasBlumet
commited on
Commit
·
f694567
1
Parent(s):
2616382
change model
Browse files
app.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
2 |
from transformers.utils import logging
|
3 |
import gradio as gr
|
4 |
-
|
5 |
|
6 |
# Define the logger instance for the transformers library
|
7 |
logger = logging.get_logger("transformers")
|
@@ -14,23 +14,23 @@ model = AutoModelForCausalLM.from_pretrained(model_name,device_map="auto",trust_
|
|
14 |
|
15 |
#transfer model on GPU
|
16 |
#model.to("cuda")
|
17 |
-
pipe = pipeline("text-generation", model=model_name, tokenizer=tokenizer,
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
|
25 |
# Generate text using the model and tokenizer
|
26 |
-
|
27 |
def generate_text(input_text):
|
28 |
-
|
29 |
#attention_mask = input_ids.ne(tokenizer.pad_token_id).long()
|
30 |
-
|
31 |
#output = model.generate(input_ids) #, attention_mask=attention_mask, max_length=100, num_return_sequences=1, no_repeat_ngram_size=2, top_k=50, top_p=0.95, temperature=0.7, do_sample=True)
|
32 |
-
|
33 |
-
return pipe(input_text)[0]["generated_text"]
|
34 |
|
35 |
interface = gr.Interface(fn=generate_text, inputs="text", outputs="text",title="TeLLMyStory",description="Enter your story idea and the model will generate the story based on it.")
|
36 |
interface.launch()
|
|
|
1 |
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
2 |
from transformers.utils import logging
|
3 |
import gradio as gr
|
4 |
+
import spaces
|
5 |
|
6 |
# Define the logger instance for the transformers library
|
7 |
logger = logging.get_logger("transformers")
|
|
|
14 |
|
15 |
#transfer model on GPU
|
16 |
#model.to("cuda")
|
17 |
+
# pipe = pipeline("text-generation", model=model_name, tokenizer=tokenizer,
|
18 |
+
# max_new_tokens=512,
|
19 |
+
# do_sample=True,
|
20 |
+
# temperature=0.7,
|
21 |
+
# top_p=0.95,
|
22 |
+
# top_k=40,
|
23 |
+
# repetition_penalty=1.1)
|
24 |
|
25 |
# Generate text using the model and tokenizer
|
26 |
+
@spaces.GPU(duration=60)
|
27 |
def generate_text(input_text):
|
28 |
+
input_ids = tokenizer.encode(input_text, return_tensors="pt")#.to("cuda")
|
29 |
#attention_mask = input_ids.ne(tokenizer.pad_token_id).long()
|
30 |
+
output = model.generate(input_ids, max_new_tokens=512, top_k=50, top_p=0.95, temperature=0.7, do_sample=True)# attention_mask=attention_mask, max_length=100, num_return_sequences=1, no_repeat_ngram_size=2, top_k=50, top_p=0.95, temperature=0.7, do_sample=True)
|
31 |
#output = model.generate(input_ids) #, attention_mask=attention_mask, max_length=100, num_return_sequences=1, no_repeat_ngram_size=2, top_k=50, top_p=0.95, temperature=0.7, do_sample=True)
|
32 |
+
return tokenizer.decode(output[0])
|
33 |
+
#return pipe(input_text)[0]["generated_text"]
|
34 |
|
35 |
interface = gr.Interface(fn=generate_text, inputs="text", outputs="text",title="TeLLMyStory",description="Enter your story idea and the model will generate the story based on it.")
|
36 |
interface.launch()
|