ThomasBlumet
commited on
Commit
·
8d9e0dc
1
Parent(s):
72903e4
change model
Browse files
app.py
CHANGED
@@ -1,22 +1,23 @@
|
|
1 |
-
from transformers import pipeline, AutoTokenizer,
|
2 |
from transformers.utils import logging
|
3 |
import gradio as gr
|
|
|
4 |
|
5 |
# Define the logger instance for the transformers library
|
6 |
logger = logging.get_logger("transformers")
|
7 |
|
8 |
# Load the model and tokenizer
|
9 |
-
model_name = "
|
10 |
tokenizer = AutoTokenizer.from_pretrained(model_name,use_fast=True)
|
11 |
-
#model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
12 |
model = AutoModelForCausalLM.from_pretrained(model_name,device_map="auto",trust_remote_code=False,revision="main")
|
13 |
|
14 |
#transfer model on GPU
|
15 |
-
model.to("cuda")
|
16 |
|
17 |
# Generate text using the model and tokenizer
|
|
|
18 |
def generate_text(input_text):
|
19 |
-
input_ids = tokenizer.encode(input_text, return_tensors="pt")
|
20 |
#attention_mask = input_ids.ne(tokenizer.pad_token_id).long()
|
21 |
output = model.generate(input_ids, max_new_tokens=512, top_k=50, top_p=0.95, temperature=0.7, do_sample=True)# attention_mask=attention_mask, max_length=100, num_return_sequences=1, no_repeat_ngram_size=2, top_k=50, top_p=0.95, temperature=0.7, do_sample=True)
|
22 |
return tokenizer.decode(output[0])
|
|
|
1 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM, GPT2Model, GPT2Tokenizer
|
2 |
from transformers.utils import logging
|
3 |
import gradio as gr
|
4 |
+
#import spaces
|
5 |
|
6 |
# Define the logger instance for the transformers library
|
7 |
logger = logging.get_logger("transformers")
|
8 |
|
9 |
# Load the model and tokenizer
|
10 |
+
model_name = "openai-community/gpt2" #"openai-community/gpt2" or "TheBloke/Mistral-7B-Instruct-v0.1-GPTQ" or "TheBloke/Llama-2-7B-Chat-GGML" or "TheBloke/zephyr-7B-beta-GPTQ"
|
11 |
tokenizer = AutoTokenizer.from_pretrained(model_name,use_fast=True)
|
|
|
12 |
model = AutoModelForCausalLM.from_pretrained(model_name,device_map="auto",trust_remote_code=False,revision="main")
|
13 |
|
14 |
#transfer model on GPU
|
15 |
+
#model.to("cuda")
|
16 |
|
17 |
# Generate text using the model and tokenizer
|
18 |
+
#@spaces.GPU(duration=60)
|
19 |
def generate_text(input_text):
|
20 |
+
input_ids = tokenizer.encode(input_text, return_tensors="pt")#.to("cuda")
|
21 |
#attention_mask = input_ids.ne(tokenizer.pad_token_id).long()
|
22 |
output = model.generate(input_ids, max_new_tokens=512, top_k=50, top_p=0.95, temperature=0.7, do_sample=True)# attention_mask=attention_mask, max_length=100, num_return_sequences=1, no_repeat_ngram_size=2, top_k=50, top_p=0.95, temperature=0.7, do_sample=True)
|
23 |
return tokenizer.decode(output[0])
|