ThomasBlumet commited on
Commit
8d9e0dc
·
1 Parent(s): 72903e4

change model

Browse files
Files changed (1) hide show
  1. app.py +6 -5
app.py CHANGED
@@ -1,22 +1,23 @@
1
- from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM
2
  from transformers.utils import logging
3
  import gradio as gr
 
4
 
5
  # Define the logger instance for the transformers library
6
  logger = logging.get_logger("transformers")
7
 
8
  # Load the model and tokenizer
9
- model_name = "TheBloke/Mistral-7B-Instruct-v0.1-GPTQ" #"openai-community/gpt2" or "TheBloke/Mistral-7B-Instruct-v0.1-GPTQ" or "TheBloke/Llama-2-7B-Chat-GGML" or "TheBloke/zephyr-7B-beta-GPTQ"
10
  tokenizer = AutoTokenizer.from_pretrained(model_name,use_fast=True)
11
- #model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
12
  model = AutoModelForCausalLM.from_pretrained(model_name,device_map="auto",trust_remote_code=False,revision="main")
13
 
14
  #transfer model on GPU
15
- model.to("cuda")
16
 
17
  # Generate text using the model and tokenizer
 
18
  def generate_text(input_text):
19
- input_ids = tokenizer.encode(input_text, return_tensors="pt").to("cuda")
20
  #attention_mask = input_ids.ne(tokenizer.pad_token_id).long()
21
  output = model.generate(input_ids, max_new_tokens=512, top_k=50, top_p=0.95, temperature=0.7, do_sample=True)# attention_mask=attention_mask, max_length=100, num_return_sequences=1, no_repeat_ngram_size=2, top_k=50, top_p=0.95, temperature=0.7, do_sample=True)
22
  return tokenizer.decode(output[0])
 
1
+ from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM, GPT2Model, GPT2Tokenizer
2
  from transformers.utils import logging
3
  import gradio as gr
4
+ #import spaces
5
 
6
  # Define the logger instance for the transformers library
7
  logger = logging.get_logger("transformers")
8
 
9
  # Load the model and tokenizer
10
+ model_name = "openai-community/gpt2" #"openai-community/gpt2" or "TheBloke/Mistral-7B-Instruct-v0.1-GPTQ" or "TheBloke/Llama-2-7B-Chat-GGML" or "TheBloke/zephyr-7B-beta-GPTQ"
11
  tokenizer = AutoTokenizer.from_pretrained(model_name,use_fast=True)
 
12
  model = AutoModelForCausalLM.from_pretrained(model_name,device_map="auto",trust_remote_code=False,revision="main")
13
 
14
  #transfer model on GPU
15
+ #model.to("cuda")
16
 
17
  # Generate text using the model and tokenizer
18
+ #@spaces.GPU(duration=60)
19
  def generate_text(input_text):
20
+ input_ids = tokenizer.encode(input_text, return_tensors="pt")#.to("cuda")
21
  #attention_mask = input_ids.ne(tokenizer.pad_token_id).long()
22
  output = model.generate(input_ids, max_new_tokens=512, top_k=50, top_p=0.95, temperature=0.7, do_sample=True)# attention_mask=attention_mask, max_length=100, num_return_sequences=1, no_repeat_ngram_size=2, top_k=50, top_p=0.95, temperature=0.7, do_sample=True)
23
  return tokenizer.decode(output[0])