ThomasBlumet commited on
Commit
3a1a0ef
·
1 Parent(s): c78eb1d

changemodel import

Browse files
Files changed (1) hide show
  1. app.py +5 -5
app.py CHANGED
@@ -7,16 +7,16 @@ logger = logging.get_logger("transformers")
7
 
8
  # Load the model and tokenizer
9
  model_name = "TheBloke/Mistral-7B-Instruct-v0.1-GPTQ" #"openai-community/gpt2" or "TheBloke/Mistral-7B-Instruct-v0.1-GPTQ" or "TheBloke/Llama-2-7B-Chat-GGML" or "TheBloke/zephyr-7B-beta-GPTQ"
10
- tokenizer = AutoTokenizer.from_pretrained(model_name)
11
  #model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
12
- model = AutoModelForCausalLM.from_pretrained(model_name, low_cpu_mem_usage=True)
13
 
14
  # Generate text using the model and tokenizer
15
  def generate_text(input_text):
16
  input_ids = tokenizer.encode(input_text, return_tensors="pt")
17
- attention_mask = input_ids.ne(tokenizer.pad_token_id).long()
18
- output = model.generate(input_ids, attention_mask=attention_mask, max_length=100, num_return_sequences=1, no_repeat_ngram_size=2, top_k=50, top_p=0.95, temperature=0.7, do_sample=True)
19
- return tokenizer.decode(output[0], skip_special_tokens=True)
20
 
21
  # def generate_text(prompt):
22
  # inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512, padding="max_length")
 
7
 
8
  # Load the model and tokenizer
9
  model_name = "TheBloke/Mistral-7B-Instruct-v0.1-GPTQ" #"openai-community/gpt2" or "TheBloke/Mistral-7B-Instruct-v0.1-GPTQ" or "TheBloke/Llama-2-7B-Chat-GGML" or "TheBloke/zephyr-7B-beta-GPTQ"
10
+ tokenizer = AutoTokenizer.from_pretrained(model_name,use_fast=True)
11
  #model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
12
+ model = AutoModelForCausalLM.from_pretrained(model_name,device_map="auto",trust_remote_code=False,revision="main")
13
 
14
  # Generate text using the model and tokenizer
15
  def generate_text(input_text):
16
  input_ids = tokenizer.encode(input_text, return_tensors="pt")
17
+ #attention_mask = input_ids.ne(tokenizer.pad_token_id).long()
18
+ output = model.generate(input_ids, max_new_tokens=512, top_k=50, top_p=0.95, temperature=0.7, do_sample=True)# attention_mask=attention_mask, max_length=100, num_return_sequences=1, no_repeat_ngram_size=2, top_k=50, top_p=0.95, temperature=0.7, do_sample=True)
19
+ return tokenizer.decode(output[0])
20
 
21
  # def generate_text(prompt):
22
  # inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512, padding="max_length")