Merge branch 'main' of https://huggingface.co/spaces/TeLLMyStory/story-generation-docker
Browse files
app.py
CHANGED
@@ -14,23 +14,23 @@ model = AutoModelForCausalLM.from_pretrained(model_name,device_map="auto",trust_
|
|
14 |
|
15 |
#transfer model on GPU
|
16 |
#model.to("cuda")
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
|
25 |
# Generate text using the model and tokenizer
|
26 |
#@spaces.GPU(duration=60)
|
27 |
def generate_text(input_text):
|
28 |
-
input_ids = tokenizer.encode(input_text, return_tensors="pt")#.to("cuda")
|
29 |
#attention_mask = input_ids.ne(tokenizer.pad_token_id).long()
|
30 |
-
output = model.generate(input_ids, max_new_tokens=512, top_k=50, top_p=0.95, temperature=0.7, do_sample=True)# attention_mask=attention_mask, max_length=100, num_return_sequences=1, no_repeat_ngram_size=2, top_k=50, top_p=0.95, temperature=0.7, do_sample=True)
|
31 |
#output = model.generate(input_ids) #, attention_mask=attention_mask, max_length=100, num_return_sequences=1, no_repeat_ngram_size=2, top_k=50, top_p=0.95, temperature=0.7, do_sample=True)
|
32 |
-
return tokenizer.decode(output[0])
|
33 |
-
|
34 |
|
35 |
interface = gr.Interface(fn=generate_text, inputs="text", outputs="text",title="TeLLMyStory",description="Enter your story idea and the model will generate the story based on it.")
|
36 |
interface.launch()
|
|
|
14 |
|
15 |
#transfer model on GPU
|
16 |
#model.to("cuda")
|
17 |
+
pipe = pipeline("text-generation", model=model_name, tokenizer=tokenizer,
|
18 |
+
max_new_tokens=512,
|
19 |
+
do_sample=True,
|
20 |
+
temperature=0.7,
|
21 |
+
top_p=0.95,
|
22 |
+
top_k=40,
|
23 |
+
repetition_penalty=1.1)
|
24 |
|
25 |
# Generate text using the model and tokenizer
|
26 |
#@spaces.GPU(duration=60)
|
27 |
def generate_text(input_text):
|
28 |
+
#input_ids = tokenizer.encode(input_text, return_tensors="pt")#.to("cuda")
|
29 |
#attention_mask = input_ids.ne(tokenizer.pad_token_id).long()
|
30 |
+
#output = model.generate(input_ids, max_new_tokens=512, top_k=50, top_p=0.95, temperature=0.7, do_sample=True)# attention_mask=attention_mask, max_length=100, num_return_sequences=1, no_repeat_ngram_size=2, top_k=50, top_p=0.95, temperature=0.7, do_sample=True)
|
31 |
#output = model.generate(input_ids) #, attention_mask=attention_mask, max_length=100, num_return_sequences=1, no_repeat_ngram_size=2, top_k=50, top_p=0.95, temperature=0.7, do_sample=True)
|
32 |
+
#return tokenizer.decode(output[0])
|
33 |
+
return pipe(input_text)[0]["generated_text"]
|
34 |
|
35 |
interface = gr.Interface(fn=generate_text, inputs="text", outputs="text",title="TeLLMyStory",description="Enter your story idea and the model will generate the story based on it.")
|
36 |
interface.launch()
|