from typing import List import yaml import os import torch import torch.distributed as dist import pydantic from omegaconf import OmegaConf from pretrain import PretrainConfig, init_train_state, evaluate, create_dataloader class EvalConfig(pydantic.BaseModel): checkpoint: str save_outputs: List[str] = ["inputs", "labels", "puzzle_identifiers", "logits", "q_halt_logits", "q_continue_logits"] def launch(): eval_cfg = EvalConfig(**OmegaConf.to_container(OmegaConf.from_cli())) # type: ignore RANK = 0 WORLD_SIZE = 1 # Initialize distributed training if in distributed environment (e.g. torchrun) if "LOCAL_RANK" in os.environ: # Initialize distributed, default device and dtype dist.init_process_group(backend="nccl") RANK = dist.get_rank() WORLD_SIZE = dist.get_world_size() torch.cuda.set_device(int(os.environ["LOCAL_RANK"])) with open(os.path.join(os.path.dirname(eval_cfg.checkpoint), "all_config.yaml"), "r") as f: config = PretrainConfig(**yaml.safe_load(f)) config.eval_save_outputs = eval_cfg.save_outputs config.checkpoint_path = os.path.dirname(eval_cfg.checkpoint) # Dataloader train_loader, train_metadata = create_dataloader(config, "train", test_set_mode=False, epochs_per_iter=1, global_batch_size=config.global_batch_size, rank=RANK, world_size=WORLD_SIZE) eval_loader, eval_metadata = create_dataloader(config, "test", test_set_mode=True, epochs_per_iter=1, global_batch_size=config.global_batch_size, rank=RANK, world_size=WORLD_SIZE) # Models train_state = init_train_state(config, train_metadata, world_size=WORLD_SIZE) # Try unwrap torch.compile try: train_state.model.load_state_dict(torch.load(eval_cfg.checkpoint, map_location="cuda"), assign=True) except: train_state.model.load_state_dict({k.removeprefix("_orig_mod."): v for k, v in torch.load(eval_cfg.checkpoint, map_location="cuda").items()}, assign=True) train_state.step = 0 ckpt_filename = os.path.basename(eval_cfg.checkpoint) if ckpt_filename.startswith("step_"): train_state.step = int(ckpt_filename.removeprefix("step_")) # Evaluate print ("Starting evaluation") train_state.model.eval() metrics = evaluate(config, train_state, eval_loader, eval_metadata, rank=RANK, world_size=WORLD_SIZE) if metrics is not None: print (metrics) if __name__ == "__main__": launch()