|
from typing import Any, Tuple, Dict, Sequence, Optional |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
|
|
|
|
IGNORE_LABEL_ID = -100 |
|
|
|
|
|
def s(x, epsilon=1e-30): |
|
return torch.where( |
|
x<0, |
|
1/(1-x+ epsilon), |
|
x + 1 |
|
) |
|
|
|
|
|
def log_stablemax(x, dim=-1): |
|
s_x = s(x) |
|
return torch.log(s_x/torch.sum(s_x, dim=dim, keepdim=True)) |
|
|
|
|
|
def stablemax_cross_entropy(logits, labels, ignore_index: int = -100): |
|
logprobs = log_stablemax(logits.to(torch.float64), dim=-1) |
|
|
|
valid_mask = labels != ignore_index |
|
transformed_labels = torch.where(valid_mask, labels, 0) |
|
prediction_logprobs = torch.gather(logprobs, index=transformed_labels.to(torch.long).unsqueeze(-1), dim=-1).squeeze(-1) |
|
|
|
return -torch.where(valid_mask, prediction_logprobs, 0) |
|
|
|
|
|
def softmax_cross_entropy(logits, labels, ignore_index: int = -100): |
|
|
|
|
|
return F.cross_entropy(logits.to(torch.float32).view(-1, logits.shape[-1]), labels.to(torch.long).view(-1), ignore_index=ignore_index, reduction="none").view(labels.shape) |
|
|
|
|
|
class ACTLossHead(nn.Module): |
|
def __init__(self, model: nn.Module, loss_type: str): |
|
super().__init__() |
|
self.model = model |
|
self.loss_fn = globals()[loss_type] |
|
|
|
def initial_carry(self, *args, **kwargs): |
|
return self.model.initial_carry(*args, **kwargs) |
|
|
|
def forward( |
|
self, |
|
return_keys: Sequence[str], |
|
|
|
**model_kwargs, |
|
) -> Tuple[Any, torch.Tensor, Dict[str, torch.Tensor], Optional[Dict[str, torch.Tensor]], torch.Tensor]: |
|
|
|
|
|
new_carry, outputs = self.model(**model_kwargs) |
|
labels = new_carry.current_data["labels"] |
|
|
|
|
|
with torch.no_grad(): |
|
mask = labels != IGNORE_LABEL_ID |
|
loss_counts = mask.sum(-1) |
|
loss_divisor = loss_counts.clamp_min(1).unsqueeze(-1) |
|
|
|
is_correct = mask & (torch.argmax(outputs["logits"], dim=-1) == labels) |
|
seq_is_correct = is_correct.sum(-1) == loss_counts |
|
|
|
|
|
valid_metrics = new_carry.halted & (loss_counts > 0) |
|
metrics = { |
|
"count": valid_metrics.sum(), |
|
|
|
"accuracy": torch.where(valid_metrics, (is_correct.to(torch.float32) / loss_divisor).sum(-1), 0).sum(), |
|
"exact_accuracy": (valid_metrics & seq_is_correct).sum(), |
|
|
|
"q_halt_accuracy": (valid_metrics & ((outputs["q_halt_logits"] >= 0) == seq_is_correct)).sum(), |
|
"steps": torch.where(valid_metrics, new_carry.steps, 0).sum(), |
|
} |
|
|
|
|
|
|
|
lm_loss = (self.loss_fn(outputs["logits"], labels, ignore_index=IGNORE_LABEL_ID) / loss_divisor).sum() |
|
q_halt_loss = F.binary_cross_entropy_with_logits(outputs["q_halt_logits"], seq_is_correct.to(outputs["q_halt_logits"].dtype), reduction="sum") |
|
|
|
metrics.update({ |
|
"lm_loss": lm_loss.detach(), |
|
"q_halt_loss": q_halt_loss.detach(), |
|
}) |
|
|
|
|
|
q_continue_loss = 0 |
|
if "target_q_continue" in outputs: |
|
q_continue_loss = F.binary_cross_entropy_with_logits(outputs["q_continue_logits"], outputs["target_q_continue"], reduction="sum") |
|
|
|
metrics["q_continue_loss"] = q_continue_loss.detach() |
|
|
|
|
|
detached_outputs = {k: outputs[k].detach() for k in return_keys if k in outputs} |
|
|
|
return new_carry, lm_loss + 0.5 * (q_halt_loss + q_continue_loss), metrics, detached_outputs, new_carry.halted.all() |
|
|