File size: 9,317 Bytes
bd62227
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "import json\n",
    "from glob import glob\n",
    "import hashlib\n",
    "import matplotlib.pyplot as plt\n",
    "import matplotlib.colors as mcolors\n",
    "\n",
    "import torch\n",
    "import torch.nn.functional as F\n",
    "import numpy as np\n",
    "from numba import njit\n",
    "\n",
    "from dataset.common import inverse_dihedral_transform\n",
    "\n",
    "\n",
    "DATASET_PATH = \"data/arc-aug-1000\"  # ARC-1\n",
    "# DATASET_PATH = \"data/arc-2-aug-1000\"  # ARC-2\n",
    "\n",
    "CHECKPOINT_PATH = \"checkpoints/Arc-aug-1000 ACT-torch/HierarchicalReasoningModel_ACTV1 amphibian-turaco/step_414456\"\n",
    "\n",
    "\n",
    "PAD_PUZZLE_IDENTIFIER = 0\n",
    "\n",
    "# Visualization\n",
    "ARC_COLOR_MAP = mcolors.ListedColormap([\n",
    "    \"#000000\",  # symbol_0: black\n",
    "    \"#0074D9\",  # symbol_1: blue\n",
    "    \"#FF4136\",  # symbol_2: red\n",
    "    \"#2ECC40\",  # symbol_3: green\n",
    "    \"#FFDC00\",  # symbol_4: yellow\n",
    "    \"#AAAAAA\",  # symbol_5: grey\n",
    "    \"#F012BE\",  # symbol_6: fuschia\n",
    "    \"#FF851B\",  # symbol_7: orange\n",
    "    \"#7FDBFF\",  # symbol_8: teal\n",
    "    \"#870C25\"   # symbol_9: brown\n",
    "])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "def load_identifiers_and_preds(dataset_path: str, checkpoint_path: str):\n",
    "    # Load puzzle identifiers\n",
    "    with open(os.path.join(dataset_path, \"identifiers.json\"), \"r\") as f:\n",
    "        identifier_map = json.load(f)\n",
    "        \n",
    "    # Load preds\n",
    "    all_preds = {}\n",
    "    for filename in glob(f\"{checkpoint_path}_all_preds.*\"):\n",
    "        preds = torch.load(filename)\n",
    "        for k, v in preds.items():\n",
    "            all_preds.setdefault(k, [])\n",
    "            all_preds[k].append(v)\n",
    "            \n",
    "        del preds\n",
    "\n",
    "    all_preds = {k: torch.cat(v, dim=0) for k, v in all_preds.items()}\n",
    "    \n",
    "    # Remove paddings\n",
    "    mask = all_preds[\"puzzle_identifiers\"] != PAD_PUZZLE_IDENTIFIER\n",
    "    all_preds = {k: v[mask] for k, v in all_preds.items()}\n",
    "\n",
    "    return identifier_map, all_preds\n",
    "\n",
    "\n",
    "def inverse_aug(name: str, grid: np.ndarray):\n",
    "    if \"_\" not in name:\n",
    "        return grid\n",
    "\n",
    "    trans_id, perm = name.split(\"_\")[-2:]\n",
    "    trans_id = int(trans_id[1:])  # Remove \"t\" letter\n",
    "    inv_perm = np.argsort(list(perm))\n",
    "    \n",
    "    return inv_perm[inverse_dihedral_transform(grid, trans_id)]\n",
    "\n",
    "\n",
    "def grid_hash(grid: np.ndarray):\n",
    "    return hash((grid.tobytes(), grid.shape))\n",
    "\n",
    "\n",
    "@njit\n",
    "def crop(grid: np.ndarray):\n",
    "    # Find maximum-sized rectangle without any EOS token inside.\n",
    "    grid = grid.reshape(30, 30)\n",
    "\n",
    "    max_area = 0\n",
    "    max_size = (0, 0)\n",
    "    nr, nc = grid.shape\n",
    "    \n",
    "    num_c = nc\n",
    "    for num_r in range(1, nr + 1):\n",
    "        # Scan for maximum c\n",
    "        for c in range(1, num_c + 1):\n",
    "            x = grid[num_r - 1, c - 1]\n",
    "            if (x < 2) | (x > 11):\n",
    "                num_c = c - 1\n",
    "                break\n",
    "        \n",
    "        area = num_r * num_c\n",
    "        if area > max_area:\n",
    "            max_area = area\n",
    "            max_size = (num_r, num_c)\n",
    "\n",
    "    return grid[:max_size[0], :max_size[1]] - 2\n",
    "\n",
    "\n",
    "def test(visualize, Ks=[1, 2, 10, 100, 1000]):\n",
    "    identifier_map, all_preds = load_identifiers_and_preds(DATASET_PATH, CHECKPOINT_PATH)\n",
    "    \n",
    "    global_hmap = {}\n",
    "    \n",
    "    # Get puzzles and corresponding answers\n",
    "    puzzle_labels = {}\n",
    "    for identifier, input, label in zip(all_preds[\"puzzle_identifiers\"], all_preds[\"inputs\"], all_preds[\"labels\"]):\n",
    "        name = identifier_map[identifier]\n",
    "        if \"_\" not in name:   # Not-augmented\n",
    "            puzzle_labels.setdefault(name, {})\n",
    "            \n",
    "            input = crop(input.numpy())\n",
    "            label = crop(label.numpy())\n",
    "\n",
    "            input_hash = grid_hash(input)\n",
    "            label_hash = grid_hash(label)\n",
    "\n",
    "            global_hmap[input_hash] = input\n",
    "            global_hmap[label_hash] = label\n",
    "\n",
    "            assert input_hash not in puzzle_labels[name]\n",
    "            puzzle_labels[name][input_hash] = label_hash\n",
    "            \n",
    "    print (\"Number of puzzles\", len(puzzle_labels))\n",
    "    \n",
    "    # Argmax prediction\n",
    "    preds = all_preds[\"logits\"].argmax(-1)\n",
    "\n",
    "    # Collate\n",
    "    pred_answers = {}\n",
    "    for identifier, input, pred, q in zip(all_preds[\"puzzle_identifiers\"], all_preds[\"inputs\"], preds, all_preds[\"q_halt_logits\"].sigmoid()):\n",
    "        name = identifier_map[identifier]\n",
    "        orig_name = name.split(\"_\")[0]\n",
    "        \n",
    "        input = input.numpy()\n",
    "        input_hash = grid_hash(inverse_aug(name, crop(input)))\n",
    "        assert input_hash in puzzle_labels[orig_name]\n",
    "        \n",
    "        pred = inverse_aug(name, crop(pred.numpy()))\n",
    "        pred_hash = grid_hash(pred)\n",
    "        global_hmap[pred_hash] = pred\n",
    "        \n",
    "        pred_answers.setdefault(orig_name, {})\n",
    "        pred_answers[orig_name].setdefault(input_hash, [])\n",
    "        pred_answers[orig_name][input_hash].append((pred_hash, q.item()))\n",
    "\n",
    "    # test-1\n",
    "    if visualize:\n",
    "        num_figs = sum(len(tests) for name, tests in puzzle_labels.items())\n",
    "        fig, axes = plt.subplots(num_figs, 4, figsize=(8, num_figs * 4))\n",
    "        \n",
    "        fig_id = 0\n",
    "    \n",
    "    correct = [0 for _ in range(len(Ks))]\n",
    "    for name, tests in puzzle_labels.items():\n",
    "        num_test_correct = [0 for _ in range(len(Ks))]\n",
    "        for input_hash, label_hash in tests.items():\n",
    "            p = pred_answers[name][input_hash]\n",
    "            p_map = {}\n",
    "            \n",
    "            for h, q in p:\n",
    "                p_map.setdefault(h, [0, 0])\n",
    "                p_map[h][0] += 1\n",
    "                p_map[h][1] += q\n",
    "                \n",
    "            for h, stats in p_map.items():\n",
    "                stats[1] /= stats[0]\n",
    "                \n",
    "            p_map = sorted(p_map.items(), key=lambda kv: kv[1], reverse=True)\n",
    "\n",
    "            # 2-vote\n",
    "            for i, k in enumerate(Ks):\n",
    "                ok = False\n",
    "                for h, stats in p_map[:k]:\n",
    "                    ok |= h == label_hash\n",
    "                    \n",
    "                num_test_correct[i] += ok\n",
    "\n",
    "            if visualize:\n",
    "                # Show input and ground truth\n",
    "                axes[fig_id, 0].imshow(global_hmap[input_hash], cmap=ARC_COLOR_MAP)\n",
    "                axes[fig_id, 0].set_title(f\"{name}\\nInput\")\n",
    "                axes[fig_id, 0].axis('off')\n",
    "                \n",
    "                axes[fig_id, 1].imshow(global_hmap[label_hash], cmap=ARC_COLOR_MAP)\n",
    "                axes[fig_id, 1].set_title(f\"{name}\\nAnswer\")\n",
    "                axes[fig_id, 1].axis('off')\n",
    "                \n",
    "                trial_id = 2\n",
    "                for h, stats in p_map[:2]:\n",
    "                    ans = global_hmap[h]\n",
    "                    \n",
    "                    axes[fig_id, trial_id].imshow(ans, cmap=ARC_COLOR_MAP)\n",
    "                    axes[fig_id, trial_id].set_title(f\"{name}\\nTrial {trial_id}\")\n",
    "                    axes[fig_id, trial_id].axis('off')\n",
    "                    \n",
    "                    trial_id += 1\n",
    "                \n",
    "                fig_id += 1\n",
    "            \n",
    "        # Total correctness\n",
    "        for i in range(len(Ks)):\n",
    "            correct[i] += num_test_correct[i] == len(tests)\n",
    "\n",
    "    for i, k in enumerate(Ks):\n",
    "        print (f\"{k}-shot: {correct[i] / len(puzzle_labels) * 100:.2f}%\")\n",
    "\n",
    "\n",
    "test(visualize=False)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.10"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}