File size: 5,720 Bytes
bd62227
 
 
 
 
 
171e2fc
 
 
 
 
 
bd62227
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
171e2fc
bd62227
 
 
 
 
171e2fc
 
bd62227
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
171e2fc
 
 
 
bd62227
 
 
 
 
 
 
171e2fc
 
 
bd62227
 
171e2fc
bd62227
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
from typing import Tuple

import torch
from torch import nn
import torch.nn.functional as F

try:
    from flash_attn_interface import flash_attn_func  # type: ignore[import]
except ImportError:
    # Fallback to FlashAttention 2
    from flash_attn import flash_attn_func  # type: ignore[import]

from models.common import trunc_normal_init_


CosSin = Tuple[torch.Tensor, torch.Tensor]


def _find_multiple(a, b):
    return (-(a // -b)) * b


def rotate_half(x: torch.Tensor):
    """Rotates half the hidden dims of the input."""
    x1 = x[..., : x.shape[-1] // 2]
    x2 = x[..., x.shape[-1] // 2 :]
    return torch.cat((-x2, x1), dim=-1)


def apply_rotary_pos_emb(q: torch.Tensor, k: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor):
    # q, k: [bs, seq_len, num_heads, head_dim]
    # cos, sin: [seq_len, head_dim]
    orig_dtype = q.dtype
    q = q.to(cos.dtype)
    k = k.to(cos.dtype)

    q_embed = (q * cos.unsqueeze(-2)) + (rotate_half(q) * sin.unsqueeze(-2))
    k_embed = (k * cos.unsqueeze(-2)) + (rotate_half(k) * sin.unsqueeze(-2))

    return q_embed.to(orig_dtype), k_embed.to(orig_dtype)


class CastedLinear(nn.Module):
    def __init__(self,
                 in_features: int,
                 out_features: int,
                 bias: bool):
        super().__init__()
        # Truncated LeCun normal init
        self.weight = nn.Parameter(
            trunc_normal_init_(torch.empty((out_features, in_features)), std=1.0 / (in_features ** 0.5))
        )
        self.bias = None
        if bias:
            # Zero init bias
            self.bias = nn.Parameter(torch.zeros((out_features, )))

    def forward(self, input: torch.Tensor) -> torch.Tensor:
        return F.linear(input, self.weight.to(input.dtype), bias=self.bias.to(input.dtype) if self.bias is not None else None)


class CastedEmbedding(nn.Module):
    def __init__(self,
                 num_embeddings: int,
                 embedding_dim: int,
                 init_std: float,
                 cast_to: torch.dtype):
        super().__init__()
        self.cast_to = cast_to

        # Truncated LeCun normal init
        self.embedding_weight = nn.Parameter(
            trunc_normal_init_(torch.empty((num_embeddings, embedding_dim)), std=init_std)
        )
        
    def forward(self, input: torch.Tensor) -> torch.Tensor:
        return F.embedding(input, self.embedding_weight.to(self.cast_to))


class RotaryEmbedding(nn.Module):
    def __init__(self, dim, max_position_embeddings, base, device=None):
        super().__init__()

        # RoPE
        inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim))
        t = torch.arange(max_position_embeddings, dtype=torch.float32, device=device)
        freqs = torch.outer(t, inv_freq)

        # Different from paper, but it uses a different permutation in order to obtain the same calculation
        emb = torch.cat((freqs, freqs), dim=-1)
        self.cos_cached = nn.Buffer(emb.cos(), persistent=False)
        self.sin_cached = nn.Buffer(emb.sin(), persistent=False)

    def forward(self):
        return self.cos_cached, self.sin_cached


class Attention(nn.Module):
    def __init__(self, hidden_size, head_dim, num_heads, num_key_value_heads, causal=False):
        super().__init__()

        self.hidden_size = hidden_size
        self.head_dim = head_dim
        self.output_size = head_dim * num_heads
        self.num_heads = num_heads
        self.num_key_value_heads = num_key_value_heads
        self.causal = causal

        self.qkv_proj = CastedLinear(self.hidden_size, (self.num_heads + 2 * self.num_key_value_heads) * self.head_dim, bias=False)
        self.o_proj = CastedLinear(self.output_size, self.hidden_size, bias=False)

    def forward(self, cos_sin: CosSin, hidden_states: torch.Tensor) -> torch.Tensor:
        batch_size, seq_len, _ = hidden_states.shape

        # hidden_states: [bs, seq_len, num_heads, head_dim]
        qkv = self.qkv_proj(hidden_states)

        # Split head
        qkv = qkv.view(batch_size, seq_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim)
        query = qkv[:, :, :self.num_heads]
        key = qkv[:, :, self.num_heads: self.num_heads + self.num_key_value_heads]
        value = qkv[:, :, self.num_heads + self.num_key_value_heads:]

        # RoPE
        if cos_sin is not None:
            cos, sin = cos_sin
            query, key = apply_rotary_pos_emb(query, key, cos, sin)

        # flash attn
        attn_output = flash_attn_func(q=query, k=key, v=value, causal=self.causal)
        if isinstance(attn_output, tuple):  # fa2 and fa3 compatibility
            attn_output = attn_output[0]

        # attn_output: [batch_size, num_heads, seq_len, head_dim]
        attn_output = attn_output.view(batch_size, seq_len, self.output_size)  # type: ignore
        return self.o_proj(attn_output)


class SwiGLU(nn.Module):
    def __init__(self, hidden_size: int, expansion: float):
        super().__init__()
        inter = _find_multiple(round(expansion * hidden_size * 2 / 3), 256)

        self.gate_up_proj = CastedLinear(hidden_size, inter * 2, bias=False)
        self.down_proj    = CastedLinear(inter, hidden_size, bias=False)

    def forward(self, x):
        gate, up = self.gate_up_proj(x).chunk(2, dim=-1)
        return self.down_proj(F.silu(gate) * up)


def rms_norm(hidden_states: torch.Tensor, variance_epsilon: float) -> torch.Tensor:
    input_dtype = hidden_states.dtype
    hidden_states = hidden_states.to(torch.float32)

    variance = hidden_states.square().mean(-1, keepdim=True)
    hidden_states = hidden_states * torch.rsqrt(variance + variance_epsilon)
    return hidden_states.to(input_dtype)