Spaces:
Paused
Paused
File size: 4,022 Bytes
9b25f0e 8ff201d b4fa047 8ff201d b4fa047 8ff201d b4fa047 8ff201d b4fa047 8ff201d b4fa047 c5d3fee b4fa047 13669f6 8ff201d 13669f6 8ff201d 13669f6 8ff201d 13669f6 8ff201d b4fa047 13669f6 8ff201d 13669f6 b4fa047 13669f6 b4fa047 13669f6 b4fa047 13669f6 8ff201d b4fa047 13669f6 929aae5 3f86c47 13669f6 3f86c47 8ff201d b4fa047 13669f6 8ff201d 13669f6 8ff201d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 |
import gradio as gr
import spaces
from mistral_inference.transformer import Transformer
from mistral_inference.generate import generate
from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
from mistral_common.protocol.instruct.messages import UserMessage, TextChunk, ImageURLChunk
from mistral_common.protocol.instruct.request import ChatCompletionRequest
from huggingface_hub import snapshot_download
from pathlib import Path
# モデルのダウンロードと準備
mistral_models_path = Path.home().joinpath('mistral_models', 'Pixtral')
mistral_models_path.mkdir(parents=True, exist_ok=True)
snapshot_download(repo_id="mistral-community/pixtral-12b-240910",
allow_patterns=["params.json", "consolidated.safetensors", "tekken.json"],
local_dir=mistral_models_path)
# トークナイザーとモデルのロード
tokenizer = MistralTokenizer.from_file(f"{mistral_models_path}/tekken.json")
model = Transformer.from_folder(mistral_models_path)
# 推論処理
@spaces.GPU
def mistral_inference(prompt, image_url):
completion_request = ChatCompletionRequest(
messages=[UserMessage(content=[ImageURLChunk(image_url=image_url), TextChunk(text=prompt)])]
)
encoded = tokenizer.encode_chat_completion(completion_request)
images = encoded.images
tokens = encoded.tokens
out_tokens, _ = generate([tokens], model, images=[images], max_tokens=1024, temperature=0.35, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)
result = tokenizer.decode(out_tokens[0])
return result
# 言語によるUIラベルの設定
def get_labels(language):
labels = {
'en': {
'title': "Pixtral Model Image Description",
'text_prompt': "Text Prompt",
'image_url': "Image URL",
'output': "Model Output",
'image_display': "Input Image",
'submit': "Run Inference"
},
'zh': {
'title': "Pixtral模型图像描述",
'text_prompt': "文本提示",
'image_url': "图片网址",
'output': "模型输出",
'image_display': "输入图片",
'submit': "运行推理"
},
'jp': {
'title': "Pixtralモデルによる画像説明生成",
'text_prompt': "テキストプロンプト",
'image_url': "画像URL",
'output': "モデルの出力結果",
'image_display': "入力された画像",
'submit': "推論を実行"
}
}
return labels[language]
# Gradioインターフェース
def process_input(text, image_url):
result = mistral_inference(text, image_url)
return result, f'<img src="{image_url}" alt="Input Image" width="300">'
def update_ui(language):
labels = get_labels(language)
return labels['title'], labels['text_prompt'], labels['image_url'], labels['output'], labels['image_display'], labels['submit']
with gr.Blocks() as demo:
language_choice = gr.Dropdown(choices=['en', 'zh', 'jp'], label="Select Language", value='en')
title = gr.Markdown("## Pixtral Model Image Description")
with gr.Row():
text_input = gr.Textbox(label="Text Prompt", placeholder="e.g. Describe the image.")
image_input = gr.Textbox(label="Image URL", placeholder="e.g. https://example.com/image.png")
result_output = gr.Textbox(label="Model Output", lines=8, max_lines=20) # 高さ500ピクセルに相当するように調整
image_output = gr.HTML(label="Input Image") # 入力画像URLを表示するための場所
submit_button = gr.Button("Run Inference")
submit_button.click(process_input, inputs=[text_input, image_input], outputs=[result_output, image_output])
# 言語変更時にUIラベルを更新
language_choice.change(
fn=update_ui,
inputs=[language_choice],
outputs=[title, text_input, image_input, result_output, image_output, submit_button]
)
demo.launch() |