Tapanat commited on
Commit
6d33aca
·
1 Parent(s): 4836313

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +20 -34
app.py CHANGED
@@ -1,41 +1,27 @@
1
  import streamlit as st
2
- from transformers import AutoTokenizer, AutoModelForSequenceClassification
3
- import torch
 
4
 
5
- # Load the pre-trained model and tokenizer
6
- model_name = "j-hartmann/emotion-english-distilroberta-base"
7
- tokenizer = AutoTokenizer.from_pretrained(model_name)
8
- model = AutoModelForSequenceClassification.from_pretrained(model_name)
9
 
10
- # Streamlit UI
11
- st.title("Text Classification App")
12
 
13
- # Input text area for user input
14
- text = st.text_area("Enter text for classification:")
 
 
 
 
 
 
 
15
 
16
- if text:
17
- # Tokenize the input text
18
- inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
19
 
20
- # Perform text classification
21
- with torch.no_grad():
22
- outputs = model(**inputs)
23
-
24
- # Get the predicted label and score
25
- label_id = torch.argmax(outputs.logits, dim=1).item()
26
- label = model.config.id2label[label_id]
27
- score = torch.softmax(outputs.logits, dim=1)[0, label_id].item()
28
-
29
- # Display the classification result
30
- st.subheader("Classification Result:")
31
- st.write(f"Predicted Label: {label}")
32
- st.write(f"Confidence Score: {score:.4f}")
33
-
34
- # Sidebar with model information
35
- st.sidebar.subheader("Model Information")
36
- st.sidebar.write(f"Model: {model_name}")
37
- st.sidebar.write(f"Number of Labels: {model.config.num_labels}")
38
-
39
- # Powered by Hugging Face
40
- st.write("Powered by Hugging Face's Transformers library.")
41
 
 
 
 
 
1
  import streamlit as st
2
+ from transformers import pipeline
3
+ from PIL import Image
4
+ import req
5
 
6
+ classifier = pipeline("image-classification", model="google/vit-base-patch16-224")
7
+ def get_img_from_url(url):
8
+ return Image.open(requests.get(url, stream=True).raw)
 
9
 
10
+ def main():
11
+ st.title("image-classification")
12
 
13
+ with st.form("image"):
14
+
15
+ url = st.text_input("URL to some image", "https://images.livemint.com/img/2022/08/01/600x338/Cat-andriyko-podilnyk-RCfi7vgJjUY-unsplash_1659328989095_1659328998370_1659328998370.jpg")
16
+ img = get_img_from_url(url)
17
+ # clicked==True only when the button is clicked
18
+ clicked = st.form_submit_button("Submit")
19
+ if clicked:
20
+ results = classifier(img)
21
+ st.json(results)
22
 
 
 
 
23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
 
25
+
26
+ if _name_ == "_main_":
27
+ main()