eyevy229352 / app.py
Tapanat's picture
Update app.py
46f1785
raw
history blame
1.17 kB
import streamlit as st
from transformers import CLIPProcessor, CLIPModel
from PIL import Image
import torch
# Load the pre-trained CLIP model and processor
model_name = "facebook/nougat-base" needed
model = CLIPModel.from_pretrained(model_name)
processor = CLIPProcessor.from_pretrained(model_name)
st.title("Image to Text Conversion App")
# Input image upload
image = st.file_uploader("Upload an image", type=["jpg", "png", "jpeg"])
if image:
# Display the uploaded image
st.image(image, caption="Uploaded Image", use_column_width=True)
# Process the image for text conversion
with torch.no_grad():
inputs = processor(text="a photo of " + st.session_state["alt_text"], images=image, return_tensors="pt")
outputs = model(**inputs)
# Extract the textual description
text_description = processor.decode(outputs["text"])
# Display the text description
st.subheader("Text Description:")
st.write(text_description)
# Input for alternative text
alt_text = st.text_area("Provide alternative text for the image:", key="alt_text")
st.write("Powered by Hugging Face's CLIP model.")
streamlit run app.py