Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import zipfile
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
from transformers import SegformerForImageSegmentation, ResNetForImageClassification, AdamW
|
6 |
+
from PIL import Image
|
7 |
+
from torch.utils.data import Dataset, DataLoader
|
8 |
+
import streamlit as st
|
9 |
+
import gradio as gr
|
10 |
+
|
11 |
+
# Load the Segformer model using Gradio (Optional)
|
12 |
+
gr.load("models/nvidia/segformer-b0-finetuned-ade-512-512").launch()
|
13 |
+
|
14 |
+
# Function to extract zip files
|
15 |
+
def extract_zip(zip_file, extract_to):
|
16 |
+
with zipfile.ZipFile(zip_file, 'r') as zip_ref:
|
17 |
+
zip_ref.extractall(extract_to)
|
18 |
+
|
19 |
+
# Preprocess images
|
20 |
+
def preprocess_image(image_path):
|
21 |
+
ext = os.path.splitext(image_path)[-1].lower()
|
22 |
+
|
23 |
+
if ext == '.npy':
|
24 |
+
image_data = np.load(image_path)
|
25 |
+
image_tensor = torch.tensor(image_data).float()
|
26 |
+
if len(image_tensor.shape) == 3:
|
27 |
+
image_tensor = image_tensor.unsqueeze(0)
|
28 |
+
|
29 |
+
elif ext in ['.jpg', '.jpeg']:
|
30 |
+
img = Image.open(image_path).convert('RGB').resize((224, 224))
|
31 |
+
img_np = np.array(img)
|
32 |
+
image_tensor = torch.tensor(img_np).permute(2, 0, 1).float()
|
33 |
+
|
34 |
+
else:
|
35 |
+
raise ValueError(f"Unsupported format: {ext}")
|
36 |
+
|
37 |
+
image_tensor /= 255.0 # Normalize to [0, 1]
|
38 |
+
return image_tensor
|
39 |
+
|
40 |
+
# Prepare dataset
|
41 |
+
def prepare_dataset(extracted_folder):
|
42 |
+
neuronii_path = os.path.join(extracted_folder, "neuroniiimages")
|
43 |
+
|
44 |
+
if not os.path.exists(neuronii_path):
|
45 |
+
raise FileNotFoundError(f"The folder neuroniiimages does not exist in the extracted folder: {neuronii_path}")
|
46 |
+
|
47 |
+
image_paths = []
|
48 |
+
labels = []
|
49 |
+
|
50 |
+
for disease_folder in ['alzheimers_dataset', 'parkinsons_dataset', 'MSjpg']:
|
51 |
+
folder_path = os.path.join(neuronii_path, disease_folder)
|
52 |
+
|
53 |
+
if not os.path.exists(folder_path):
|
54 |
+
print(f"Folder not found: {folder_path}")
|
55 |
+
continue
|
56 |
+
label = {'alzheimers_dataset': 0, 'parkinsons_dataset': 1, 'MSjpg': 2}[disease_folder]
|
57 |
+
|
58 |
+
for img_file in os.listdir(folder_path):
|
59 |
+
if img_file.endswith(('.npy', '.jpg', '.jpeg')):
|
60 |
+
image_paths.append(os.path.join(folder_path, img_file))
|
61 |
+
labels.append(label)
|
62 |
+
else:
|
63 |
+
print(f"Unsupported file: {img_file}")
|
64 |
+
print(f"Total images loaded: {len(image_paths)}")
|
65 |
+
return image_paths, labels
|
66 |
+
|
67 |
+
# Custom Dataset class
|
68 |
+
class CustomImageDataset(Dataset):
|
69 |
+
def __init__(self, image_paths, labels):
|
70 |
+
self.image_paths = image_paths
|
71 |
+
self.labels = labels
|
72 |
+
|
73 |
+
def __len__(self):
|
74 |
+
return len(self.image_paths)
|
75 |
+
|
76 |
+
def __getitem__(self, idx):
|
77 |
+
image = preprocess_image(self.image_paths[idx])
|
78 |
+
label = self.labels[idx]
|
79 |
+
return image, label
|
80 |
+
|
81 |
+
# Training function for classification
|
82 |
+
def fine_tune_classification_model(train_loader):
|
83 |
+
model = ResNetForImageClassification.from_pretrained('microsoft/resnet-50', num_labels=3)
|
84 |
+
model.train()
|
85 |
+
optimizer = AdamW(model.parameters(), lr=1e-4)
|
86 |
+
criterion = torch.nn.CrossEntropyLoss()
|
87 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
88 |
+
model.to(device)
|
89 |
+
|
90 |
+
for epoch in range(10):
|
91 |
+
running_loss = 0.0
|
92 |
+
for images, labels in train_loader:
|
93 |
+
images, labels = images.to(device), labels.to(device)
|
94 |
+
optimizer.zero_grad()
|
95 |
+
outputs = model(pixel_values=images).logits
|
96 |
+
loss = criterion(outputs, labels)
|
97 |
+
loss.backward()
|
98 |
+
optimizer.step()
|
99 |
+
running_loss += loss.item()
|
100 |
+
return running_loss / len(train_loader)
|
101 |
+
|
102 |
+
# Streamlit UI for Fine-tuning
|
103 |
+
st.title("Fine-tune ResNet for MRI/CT Scans Classification")
|
104 |
+
|
105 |
+
zip_file_url = "https://huggingface.co/spaces/Tanusree88/ViT-MRI-FineTuning/resolve/main/neuroniiimages.zip"
|
106 |
+
|
107 |
+
if st.button("Start Training"):
|
108 |
+
extraction_dir = "extracted_files"
|
109 |
+
os.makedirs(extraction_dir, exist_ok=True)
|
110 |
+
|
111 |
+
# Download the zip file (placeholder)
|
112 |
+
zip_file = "neuroniiimages.zip" # Assuming you downloaded it with this name
|
113 |
+
|
114 |
+
# Extract zip file
|
115 |
+
extract_zip(zip_file, extraction_dir)
|
116 |
+
|
117 |
+
# Prepare dataset
|
118 |
+
image_paths, labels = prepare_dataset(extraction_dir)
|
119 |
+
dataset = CustomImageDataset(image_paths, labels)
|
120 |
+
train_loader = DataLoader(dataset, batch_size=32, shuffle=True)
|
121 |
+
|
122 |
+
# Fine-tune the classification model
|
123 |
+
final_loss = fine_tune_classification_model(train_loader)
|
124 |
+
st.write(f"Training Complete with Final Loss: {final_loss}")
|
125 |
+
|
126 |
+
# Segmentation function (using SegFormer)
|
127 |
+
def fine_tune_segmentation_model(train_loader):
|
128 |
+
model = SegformerForImageSegmentation.from_pretrained('nvidia/segformer-b0', num_labels=3)
|
129 |
+
model.train()
|
130 |
+
optimizer = AdamW(model.parameters(), lr=1e-4)
|
131 |
+
criterion = torch.nn.CrossEntropyLoss()
|
132 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
133 |
+
model.to(device)
|
134 |
+
|
135 |
+
for epoch in range(10):
|
136 |
+
running_loss = 0.0
|
137 |
+
for images, labels in train_loader:
|
138 |
+
images, labels = images.to(device), labels.to(device)
|
139 |
+
optimizer.zero_grad()
|
140 |
+
outputs = model(pixel_values=images).logits
|
141 |
+
loss = criterion(outputs, labels)
|
142 |
+
loss.backward()
|
143 |
+
optimizer.step()
|
144 |
+
running_loss += loss.item()
|
145 |
+
return running_loss / len(train_loader)
|
146 |
+
|
147 |
+
# Add a button for segmentation training
|
148 |
+
if st.button("Start Segmentation Training"):
|
149 |
+
# Assuming the dataset for segmentation is prepared similarly
|
150 |
+
seg_train_loader = DataLoader(dataset, batch_size=32, shuffle=True)
|
151 |
+
|
152 |
+
# Fine-tune the segmentation model
|
153 |
+
final_loss_seg = fine_tune_segmentation_model(seg_train_loader)
|
154 |
+
st.write(f"Segmentation Training Complete with Final Loss: {final_loss_seg}")
|