from langchain_community.embeddings import HuggingFaceBgeEmbeddings class EmbeddingsModel: def __init__(self): model_name = "nomic-ai/nomic-embed-text-v1" model_kwargs = { 'device': 'cpu', 'trust_remote_code': True } encode_kwargs = {'normalize_embeddings': True} self.embeddings = HuggingFaceBgeEmbeddings( model_name=model_name, model_kwargs=model_kwargs, encode_kwargs=encode_kwargs, query_instruction="search_query:", embed_instruction="search_document:" ) def get_embeddings(self, text): """ Returns the embeddings for the given text. :param text: The input text to get embeddings for. :return: The embeddings as a numpy array. """ return self.embeddings.embed_query(text) # Example usage: # embeddings_model = EmbeddingsModel() # embeddings = embeddings_model.get_embeddings("Your input text here")