Spaces:
Running
Running
File size: 996 Bytes
9408cb5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 |
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
class EmbeddingsModel:
def __init__(self):
model_name = "nomic-ai/nomic-embed-text-v1"
model_kwargs = {
'device': 'cpu',
'trust_remote_code': True
}
encode_kwargs = {'normalize_embeddings': True}
self.embeddings = HuggingFaceBgeEmbeddings(
model_name=model_name,
model_kwargs=model_kwargs,
encode_kwargs=encode_kwargs,
query_instruction="search_query:",
embed_instruction="search_document:"
)
def get_embeddings(self, text):
"""
Returns the embeddings for the given text.
:param text: The input text to get embeddings for.
:return: The embeddings as a numpy array.
"""
return self.embeddings.embed_query(text)
# Example usage:
# embeddings_model = EmbeddingsModel()
# embeddings = embeddings_model.get_embeddings("Your input text here") |