import gradio as gr import requests from bs4 import BeautifulSoup import pandas as pd from transformers import pipeline import yfinance as yf import plotly.graph_objects as go from datetime import datetime, timedelta # Sentiment Analysis Model sentiment_model = pipeline(model="finiteautomata/bertweet-base-sentiment-analysis") # Function to encode special characters in the search query def encode_special_characters(text): encoded_text = '' special_characters = {'&': '%26', '=': '%3D', '+': '%2B', ' ': '%20'} for char in text.lower(): encoded_text += special_characters.get(char, char) return encoded_text # Function to fetch news articles def fetch_news(query, num_articles=10): encoded_query = encode_special_characters(query) url = f"https://news.google.com/search?q={encoded_query}&hl=en-US&gl=in&ceid=US%3Aen&num={num_articles}" try: response = requests.get(url, verify=False) response.raise_for_status() except requests.RequestException as e: print(f"Error fetching news: {e}") return pd.DataFrame() soup = BeautifulSoup(response.text, 'html.parser') articles = soup.find_all('article') news_data = [] for article in articles[:num_articles]: link = article.find('a')['href'].replace("./articles/", "https://news.google.com/articles/") text_parts = article.get_text(separator='\n').split('\n') news_data.append({ 'Title': text_parts[2] if len(text_parts) > 2 else 'Missing', 'Source': text_parts[0] if len(text_parts) > 0 else 'Missing', 'Time': text_parts[3] if len(text_parts) > 3 else 'Missing', 'Author': text_parts[4].split('By ')[-1] if len(text_parts) > 4 else 'Missing', 'Link': link }) return pd.DataFrame(news_data) # Function to perform sentiment analysis def analyze_sentiment(text): result = sentiment_model(text)[0] return result['label'], result['score'] # Function to fetch stock data def fetch_stock_data(symbol, start_date, end_date): stock = yf.Ticker(symbol) data = stock.history(start=start_date, end=end_date) return data # Main function to process news and perform analysis def news_and_analysis(query, stock_symbol): # Fetch news news_df = fetch_news(query) if news_df.empty: return "No news articles found.", None, None # Perform sentiment analysis news_df['Sentiment'], news_df['Sentiment_Score'] = zip(*news_df['Title'].apply(analyze_sentiment)) # Fetch stock data (last 30 days) end_date = datetime.now() start_date = end_date - timedelta(days=30) stock_data = fetch_stock_data(stock_symbol, start_date, end_date) # Create sentiment plot sentiment_fig = go.Figure(data=[go.Bar( x=news_df['Time'], y=news_df['Sentiment_Score'], marker_color=news_df['Sentiment'].map({'positive': 'green', 'neutral': 'gray', 'negative': 'red'}) )]) sentiment_fig.update_layout(title='News Sentiment Over Time', xaxis_title='Time', yaxis_title='Sentiment Score') # Create stock price plot stock_fig = go.Figure(data=[go.Candlestick( x=stock_data.index, open=stock_data['Open'], high=stock_data['High'], low=stock_data['Low'], close=stock_data['Close'] )]) stock_fig.update_layout(title=f'{stock_symbol} Stock Price', xaxis_title='Date', yaxis_title='Price') return news_df, sentiment_fig, stock_fig # Gradio interface with gr.Blocks() as demo: gr.Markdown("# Financial News Sentiment Analysis and Market Impact") with gr.Row(): topic = gr.Textbox(label="Enter a financial topic or company name") stock_symbol = gr.Textbox(label="Enter the stock symbol (e.g., RELIANCE.NS for Reliance Industries)") analyze_btn = gr.Button(value="Analyze") news_output = gr.DataFrame(label="News and Sentiment Analysis") sentiment_plot = gr.Plot(label="Sentiment Analysis") stock_plot = gr.Plot(label="Stock Price Movement") analyze_btn.click( news_and_analysis, inputs=[topic, stock_symbol], outputs=[news_output, sentiment_plot, stock_plot] ) demo.launch()