Test / app.py
TanishqO0F's picture
Update app.py
d3a1df6 verified
raw
history blame
3.58 kB
import gradio as gr
import requests
from bs4 import BeautifulSoup
import pandas as pd
from transformers import pipeline
import plotly.express as px
from datetime import datetime, timedelta
# Sentiment Analysis Model
sentiment_model = pipeline(model="finiteautomata/bertweet-base-sentiment-analysis")
# Function to encode special characters in the search query
def encode_special_characters(text):
encoded_text = ''
special_characters = {'&': '%26', '=': '%3D', '+': '%2B', ' ': '%20'}
for char in text.lower():
encoded_text += special_characters.get(char, char)
return encoded_text
# Function to fetch news articles
def fetch_news(query, num_articles=10):
encoded_query = encode_special_characters(query)
url = f"https://news.google.com/search?q={encoded_query}&hl=en-US&gl=in&ceid=US%3Aen&num={num_articles}"
try:
response = requests.get(url)
response.raise_for_status()
except requests.RequestException as e:
print(f"Error fetching news: {e}")
return pd.DataFrame()
soup = BeautifulSoup(response.text, 'html.parser')
articles = soup.find_all('article')
news_data = []
for article in articles[:num_articles]:
link = article.find('a')['href'].replace("./articles/", "https://news.google.com/articles/")
text_parts = article.get_text(separator='\n').split('\n')
news_data.append({
'Title': text_parts[2] if len(text_parts) > 2 else 'Missing',
'Source': text_parts[0] if len(text_parts) > 0 else 'Missing',
'Time': text_parts[3] if len(text_parts) > 3 else 'Missing',
'Author': text_parts[4].split('By ')[-1] if len(text_parts) > 4 else 'Missing',
'Link': link
})
return pd.DataFrame(news_data)
# Function to perform sentiment analysis
def analyze_sentiment(text):
result = sentiment_model(text)[0]
return result['label'], result['score']
# Main function to process news and perform analysis
def news_and_analysis(query):
# Fetch news
news_df = fetch_news(query)
if news_df.empty:
return "No news articles found.", None
# Perform sentiment analysis
news_df['Sentiment'], news_df['Sentiment_Score'] = zip(*news_df['Title'].apply(analyze_sentiment))
# Create sentiment plot
sentiment_fig = px.bar(
news_df,
x='Time',
y='Sentiment_Score',
color='Sentiment',
color_discrete_map={'positive': 'green', 'neutral': 'gray', 'negative': 'red'},
title='News Sentiment Over Time',
labels={'Time': 'Publication Time', 'Sentiment_Score': 'Sentiment Score'}
)
return news_df, sentiment_fig
# Gradio interface
with gr.Blocks() as demo:
gr.Markdown(
"""
# Financial News Sentiment Analysis
Analyze the sentiment of news articles related to financial topics or companies.
Enter a topic or company name to get started.
"""
)
with gr.Row():
with gr.Column():
topic = gr.Textbox(label="Enter a financial topic or company name", placeholder="e.g., Apple Inc.")
analyze_btn = gr.Button(value="Analyze")
with gr.Column():
news_output = gr.DataFrame(label="News and Sentiment Analysis")
sentiment_plot = gr.Plot(label="Sentiment Analysis")
analyze_btn.click(
news_and_analysis,
inputs=[topic],
outputs=[news_output, sentiment_plot]
)
if __name__ == "__main__":
demo.launch()