Spaces:
Runtime error
Runtime error
from mathtext_fastapi.logging import prepare_message_data_for_logging | |
from mathtext.sentiment import sentiment | |
from mathtext.text2int import text2int | |
import re | |
def build_nlu_response_object(type, data, confidence): | |
""" Turns nlu results into an object to send back to Turn.io | |
Inputs | |
- type: str - the type of nlu run (integer or sentiment-analysis) | |
- data: str - the student message | |
- confidence: - the nlu confidence score (sentiment) or '' (integer) | |
""" | |
return {'type': type, 'data': data, 'confidence': confidence} | |
def test_for_float_or_int(message_data, message_text): | |
nlu_response = {} | |
if type(message_text) == int or type(message_text) == float: | |
nlu_response = build_nlu_response_object('integer', message_text, '') | |
prepare_message_data_for_logging(message_data, nlu_response) | |
return nlu_response | |
def test_for_number_sequence(message_text_arr, message_data, message_text): | |
nlu_response = {} | |
if all(ele.isdigit() for ele in message_text_arr): | |
nlu_response = build_nlu_response_object( | |
'integer', | |
','.join(message_text_arr), | |
'' | |
) | |
prepare_message_data_for_logging(message_data, nlu_response) | |
return nlu_response | |
def run_text2int_on_each_list_item(message_text_arr): | |
""" Attempts to convert each list item to an integer | |
Input | |
- message_text_arr: list - a set of text extracted from the student message | |
Output | |
- student_response_arr: list - a set of integers (32202 for error code) | |
""" | |
student_response_arr = [] | |
for student_response in message_text_arr: | |
int_api_resp = text2int(student_response.lower()) | |
student_response_arr.append(int_api_resp) | |
return student_response_arr | |
def run_sentiment_analysis(message_text): | |
# TODO: Add intent labelling here | |
# TODO: Add logic to determine whether intent labeling or sentiment analysis is more appropriate (probably default to intent labeling) | |
return sentiment(message_text) | |
def evaluate_message_with_nlu(message_data): | |
# Keeps system working with two different inputs - full and filtered @event object | |
try: | |
message_text = message_data['message_body'] | |
except KeyError: | |
message_data = { | |
'author_id': message_data['message']['_vnd']['v1']['chat']['owner'], | |
'author_type': message_data['message']['_vnd']['v1']['author']['type'], | |
'contact_uuid': message_data['message']['_vnd']['v1']['chat']['contact_uuid'], | |
'message_body': message_data['message']['text']['body'], | |
'message_direction': message_data['message']['_vnd']['v1']['direction'], | |
'message_id': message_data['message']['id'], | |
'message_inserted_at': message_data['message']['_vnd']['v1']['chat']['inserted_at'], | |
'message_updated_at': message_data['message']['_vnd']['v1']['chat']['updated_at'], | |
} | |
message_text = message_data['message_body'] | |
number_api_resp = text2int(message_text.lower()) | |
if number_api_resp == 32202: | |
sentiment_api_resp = sentiment(message_text) | |
nlu_response = build_nlu_response_object( | |
'sentiment', | |
sentiment_api_resp[0]['label'], | |
sentiment_api_resp[0]['score'] | |
) | |
else: | |
nlu_response = build_nlu_response_object( | |
'integer', | |
number_api_resp, | |
0 | |
) | |
prepare_message_data_for_logging(message_data, nlu_response) | |
return nlu_response | |