File size: 3,064 Bytes
7ff1fe0
4120946
7ff1fe0
e63aa20
7ff1fe0
 
 
 
 
6b07ee4
 
b31816e
 
48c823d
8acf519
48c823d
7ff1fe0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7f929e
6b07ee4
007ec3d
 
25fedb7
8acf519
25fedb7
 
8acf519
25fedb7
d7c0eb6
 
 
 
 
 
 
 
25fedb7
 
 
8acf519
25fedb7
fbc5903
 
 
 
25fedb7
 
 
007ec3d
fbc5903
007ec3d
 
1054a05
b7f929e
 
8acf519
fbc5903
b7f929e
8acf519
fbc5903
b7f929e
8acf519
b7f929e
 
 
28a310a
 
48c823d
7b3a151
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
"""FastAPI endpoint
To run locally use 'uvicorn app:app --host localhost --port 7860'
"""
import re

from fastapi import FastAPI, Request
from fastapi.responses import JSONResponse
from fastapi.staticfiles import StaticFiles
from fastapi.templating import Jinja2Templates
from mathtext.sentiment import sentiment
from mathtext.text2int import text2int
from pydantic import BaseModel

from mathtext_fastapi.logging import prepare_message_data_for_logging
from mathtext_fastapi.conversation_manager import manage_conversation_response
from mathtext_fastapi.nlu import evaluate_message_with_nlu

app = FastAPI()

app.mount("/static", StaticFiles(directory="static"), name="static")

templates = Jinja2Templates(directory="templates")


class Text(BaseModel):
    content: str = ""


@app.get("/")
def home(request: Request):
    return templates.TemplateResponse("home.html", {"request": request})


@app.post("/hello")
def hello(content: Text = None):
    content = {"message": f"Hello {content.content}!"}
    return JSONResponse(content=content)


@app.post("/sentiment-analysis")
def sentiment_analysis_ep(content: Text = None):
    ml_response = sentiment(content.content)
    content = {"message": ml_response}
    return JSONResponse(content=content)


@app.post("/text2int")
def text2int_ep(content: Text = None):
    ml_response = text2int(content.content)
    content = {"message": ml_response}
    return JSONResponse(content=content)


@app.post("/manager")
async def programmatic_message_manager(request: Request):
    """
    Calls conversation management function to determine the next state

    Input
    request.body: dict - message data for the most recent user response
    {
        "author_id": "+47897891",
        "contact_uuid": "j43hk26-2hjl-43jk-hnk2-k4ljl46j0ds09",
        "author_type": "OWNER",
        "message_body": "a test message",
        "message_direction": "inbound",
        "message_id": "ABJAK64jlk3-agjkl2QHFAFH",
        "message_inserted_at": "2022-07-05T04:00:34.03352Z",
        "message_updated_at": "2023-02-14T03:54:19.342950Z",
    }

    Output
    context: dict - the information for the current state
    {
        "user": "47897891",
        "state": "welcome-message-state",
        "bot_message": "Welcome to Rori!",
        "user_message": "",
        "type": "ask"
    }
    """
    data_dict = await request.json()
    context = manage_conversation_response(data_dict)
    return JSONResponse(context)


@app.post("/nlu")
async def evaluate_user_message_with_nlu_api(request: Request):
    """ Calls nlu evaluation and returns the nlu_response

    Input
    - request.body: json - message data for the most recent user response

    Output
    - int_data_dict or sent_data_dict: dict - the type of NLU run and result
      {'type':'integer', 'data': '8'}
      {'type':'sentiment', 'data': 'negative'}
    """
    data_dict = await request.json()
    message_data = data_dict.get('message_data', '')
    nlu_response = evaluate_message_with_nlu(message_data)
    return JSONResponse(content=nlu_response)