File size: 2,821 Bytes
7ff1fe0
4120946
7ff1fe0
 
 
 
 
 
6b07ee4
 
b31816e
 
 
7ff1fe0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7f929e
6b07ee4
b7f929e
 
 
 
 
 
 
 
 
 
 
 
 
28a310a
 
da7f4f4
b7f929e
82e3c2a
da7f4f4
 
 
82e3c2a
da7f4f4
b7f929e
82e3c2a
b31816e
b7f929e
 
 
 
 
 
 
 
b31816e
4120946
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
"""FastAPI endpoint
To run locally use 'uvicorn app:app --host localhost --port 7860'
"""

from fastapi import FastAPI, Request
from fastapi.responses import JSONResponse
from fastapi.staticfiles import StaticFiles
from fastapi.templating import Jinja2Templates
from mathtext.sentiment import sentiment
from mathtext.text2int import text2int
from pydantic import BaseModel

from mathtext_fastapi.nlu import prepare_message_data_for_logging

app = FastAPI()

app.mount("/static", StaticFiles(directory="static"), name="static")

templates = Jinja2Templates(directory="templates")


class Text(BaseModel):
    content: str = ""


@app.get("/")
def home(request: Request):
    return templates.TemplateResponse("home.html", {"request": request})


@app.post("/hello")
def hello(content: Text = None):
    content = {"message": f"Hello {content.content}!"}
    return JSONResponse(content=content)


@app.post("/sentiment-analysis")
def sentiment_analysis_ep(content: Text = None):
    ml_response = sentiment(content.content)
    content = {"message": ml_response}
    return JSONResponse(content=content)


@app.post("/text2int")
def text2int_ep(content: Text = None):
    ml_response = text2int(content.content)
    content = {"message": ml_response}
    return JSONResponse(content=content)


@app.post("/nlu")
async def evaluate_user_message_with_nlu_api(request: Request):
    """ Calls NLU APIs on the most recent user message from Turn.io message data and logs the message data

    Input
    - request.body: a json object of message data for the most recent user response

    Output
    - int_data_dict or sent_data_dict: A dictionary telling the type of NLU run and the resulting data
      {'type':'integer', 'data': '8'}
      {'type':'sentiment', 'data': 'negative'}
    """

    data_dict = await request.json()
    message_data = data_dict.get('message_data', '')
    message_text = message_data['message']['text']['body']

    # Handles if a student answer is already an integer or a float
    if type(message_text) == int or type(message_text) == float:
        return JSONResponse(content={'type': 'integer', 'data': message_text})

    # Checks the student answer and returns an integer
    int_api_resp = text2int(message_text.lower())

    # '32202' is text2int's error code for non-integer student answers (ie., "I don't know")
    if int_api_resp == 32202:
        sentiment_api_resp = sentiment(message_text)
        # [{'label': 'POSITIVE', 'score': 0.991188645362854}]
        sent_data_dict = {'type': 'sentiment', 'data': sentiment_api_resp[0]['label']}
        return JSONResponse(content={'type': 'sentiment', 'data': 'negative'})

    prepare_message_data_for_logging(message_data)

    int_data_dict = {'type': 'integer', 'data': int_api_resp}

    return JSONResponse(content=int_data_dict)