Spaces:
Build error
Build error
import torch | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
import gradio as gr | |
def choose_model(model_choice): | |
if model_choice=="mt5-small": | |
return "jannatul17/squad-bn-qgen-mt5-small-v1" | |
elif model_choice=="mt5-base": | |
return "Tahsin-Mayeesha/squad-bn-mt5-base2" | |
else : | |
return "jannatul17/squad-bn-qgen-banglat5-v1" | |
def generate__questions(model_choice,context,answer): | |
model_name = choose_model(model_choice) | |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
text='answer: '+answer + ' context: ' + context | |
text_encoding = tokenizer.encode_plus( | |
text,return_tensors="pt" | |
) | |
model.eval() | |
generated_ids = model.generate( | |
input_ids=text_encoding['input_ids'], | |
attention_mask=text_encoding['attention_mask'], | |
max_length=64, | |
num_beams=5, | |
num_return_sequences=1 | |
) | |
return tokenizer.decode(generated_ids[0],skip_special_tokens=True,clean_up_tokenization_spaces=True).replace('question: ',' ') | |
demo = gr.Interface(fn=generate__questions, inputs=[gr.Dropdown(label="Model", choices=["mt5-small","mt5-base","banglat5"],value="banglat5"), | |
gr.Textbox(label='Context'), | |
gr.Textbox(label='Answer')] , | |
outputs=gr.Textbox(label='Question'), | |
title="Bangla Question Generation", | |
description="Get the Question from given Context and an Answer") | |
demo.launch() |