Spaces:
Runtime error
Runtime error
| import torch | |
| import torch.nn.functional as F | |
| import pytorch_lightning as pl | |
| import argparse, os, sys, datetime, glob, importlib | |
| from .model import Encoder, Decoder | |
| from .quantize import VectorQuantizer2 as VectorQuantizer | |
| from .quantize import GumbelQuantize | |
| from .quantize import EMAVectorQuantizer | |
| def get_obj_from_str(string, reload=False): | |
| module, cls = string.rsplit(".", 1) | |
| if reload: | |
| module_imp = importlib.import_module(module) | |
| importlib.reload(module_imp) | |
| return getattr(importlib.import_module(module, package=None), cls) | |
| def instantiate_from_config(config): | |
| if not "target" in config: | |
| raise KeyError("Expected key `target` to instantiate.") | |
| return get_obj_from_str(config["target"])(**config.get("params", dict())) | |
| class VQModel(pl.LightningModule): | |
| def __init__(self, | |
| ddconfig, | |
| lossconfig, | |
| n_embed, | |
| embed_dim, | |
| ckpt_path=None, | |
| ignore_keys=[], | |
| image_key="image", | |
| colorize_nlabels=None, | |
| monitor=None, | |
| remap=None, | |
| sane_index_shape=False, # tell vector quantizer to return indices as bhw | |
| ): | |
| super().__init__() | |
| self.image_key = image_key | |
| self.encoder = Encoder(**ddconfig) | |
| self.decoder = Decoder(**ddconfig) | |
| self.loss = instantiate_from_config(lossconfig) | |
| self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25, | |
| remap=remap, sane_index_shape=sane_index_shape) | |
| self.quant_conv = torch.nn.Conv2d(ddconfig["z_channels"], embed_dim, 1) | |
| self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1) | |
| if ckpt_path is not None: | |
| self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys) | |
| self.image_key = image_key | |
| if colorize_nlabels is not None: | |
| assert type(colorize_nlabels)==int | |
| self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1)) | |
| if monitor is not None: | |
| self.monitor = monitor | |
| def init_from_ckpt(self, path, ignore_keys=list()): | |
| sd = torch.load(path, map_location="cpu")["state_dict"] | |
| keys = list(sd.keys()) | |
| for k in keys: | |
| for ik in ignore_keys: | |
| if k.startswith(ik): | |
| print("Deleting key {} from state_dict.".format(k)) | |
| del sd[k] | |
| self.load_state_dict(sd, strict=False) | |
| print(f"Restored from {path}") | |
| def encode(self, x): | |
| h = self.encoder(x) | |
| h = self.quant_conv(h) | |
| quant, emb_loss, info = self.quantize(h) | |
| return quant, emb_loss, info | |
| def decode(self, quant): | |
| quant = self.post_quant_conv(quant) | |
| dec = self.decoder(quant) | |
| return dec | |
| def decode_code(self, code_b): | |
| quant_b = self.quantize.embed_code(code_b) | |
| dec = self.decode(quant_b) | |
| return dec | |
| def forward(self, input): | |
| quant, diff, _ = self.encode(input) | |
| dec = self.decode(quant) | |
| return dec, diff | |
| def get_input(self, batch, k): | |
| x = batch[k] | |
| if len(x.shape) == 3: | |
| x = x[..., None] | |
| x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format) | |
| return x.float() | |
| def training_step(self, batch, batch_idx, optimizer_idx): | |
| x = self.get_input(batch, self.image_key) | |
| xrec, qloss = self(x) | |
| if optimizer_idx == 0: | |
| # autoencode | |
| aeloss, log_dict_ae = self.loss(qloss, x, xrec, optimizer_idx, self.global_step, | |
| last_layer=self.get_last_layer(), split="train") | |
| self.log("train/aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True) | |
| self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True) | |
| return aeloss | |
| if optimizer_idx == 1: | |
| # discriminator | |
| discloss, log_dict_disc = self.loss(qloss, x, xrec, optimizer_idx, self.global_step, | |
| last_layer=self.get_last_layer(), split="train") | |
| self.log("train/discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True) | |
| self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=True) | |
| return discloss | |
| def validation_step(self, batch, batch_idx): | |
| x = self.get_input(batch, self.image_key) | |
| xrec, qloss = self(x) | |
| aeloss, log_dict_ae = self.loss(qloss, x, xrec, 0, self.global_step, | |
| last_layer=self.get_last_layer(), split="val") | |
| discloss, log_dict_disc = self.loss(qloss, x, xrec, 1, self.global_step, | |
| last_layer=self.get_last_layer(), split="val") | |
| rec_loss = log_dict_ae["val/rec_loss"] | |
| self.log("val/rec_loss", rec_loss, | |
| prog_bar=True, logger=True, on_step=True, on_epoch=True, sync_dist=True) | |
| self.log("val/aeloss", aeloss, | |
| prog_bar=True, logger=True, on_step=True, on_epoch=True, sync_dist=True) | |
| self.log_dict(log_dict_ae) | |
| self.log_dict(log_dict_disc) | |
| return self.log_dict | |
| def configure_optimizers(self): | |
| lr = self.learning_rate | |
| opt_ae = torch.optim.Adam(list(self.encoder.parameters())+ | |
| list(self.decoder.parameters())+ | |
| list(self.quantize.parameters())+ | |
| list(self.quant_conv.parameters())+ | |
| list(self.post_quant_conv.parameters()), | |
| lr=lr, betas=(0.5, 0.9)) | |
| opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(), | |
| lr=lr, betas=(0.5, 0.9)) | |
| return [opt_ae, opt_disc], [] | |
| def get_last_layer(self): | |
| return self.decoder.conv_out.weight | |
| def log_images(self, batch, **kwargs): | |
| log = dict() | |
| x = self.get_input(batch, self.image_key) | |
| x = x.to(self.device) | |
| xrec, _ = self(x) | |
| if x.shape[1] > 3: | |
| # colorize with random projection | |
| assert xrec.shape[1] > 3 | |
| x = self.to_rgb(x) | |
| xrec = self.to_rgb(xrec) | |
| log["inputs"] = x | |
| log["reconstructions"] = xrec | |
| return log | |
| def to_rgb(self, x): | |
| assert self.image_key == "segmentation" | |
| if not hasattr(self, "colorize"): | |
| self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x)) | |
| x = F.conv2d(x, weight=self.colorize) | |
| x = 2.*(x-x.min())/(x.max()-x.min()) - 1. | |
| return x | |
| class VQSegmentationModel(VQModel): | |
| def __init__(self, n_labels, *args, **kwargs): | |
| super().__init__(*args, **kwargs) | |
| self.register_buffer("colorize", torch.randn(3, n_labels, 1, 1)) | |
| def configure_optimizers(self): | |
| lr = self.learning_rate | |
| opt_ae = torch.optim.Adam(list(self.encoder.parameters())+ | |
| list(self.decoder.parameters())+ | |
| list(self.quantize.parameters())+ | |
| list(self.quant_conv.parameters())+ | |
| list(self.post_quant_conv.parameters()), | |
| lr=lr, betas=(0.5, 0.9)) | |
| return opt_ae | |
| def training_step(self, batch, batch_idx): | |
| x = self.get_input(batch, self.image_key) | |
| xrec, qloss = self(x) | |
| aeloss, log_dict_ae = self.loss(qloss, x, xrec, split="train") | |
| self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True) | |
| return aeloss | |
| def validation_step(self, batch, batch_idx): | |
| x = self.get_input(batch, self.image_key) | |
| xrec, qloss = self(x) | |
| aeloss, log_dict_ae = self.loss(qloss, x, xrec, split="val") | |
| self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True) | |
| total_loss = log_dict_ae["val/total_loss"] | |
| self.log("val/total_loss", total_loss, | |
| prog_bar=True, logger=True, on_step=True, on_epoch=True, sync_dist=True) | |
| return aeloss | |
| def log_images(self, batch, **kwargs): | |
| log = dict() | |
| x = self.get_input(batch, self.image_key) | |
| x = x.to(self.device) | |
| xrec, _ = self(x) | |
| if x.shape[1] > 3: | |
| # colorize with random projection | |
| assert xrec.shape[1] > 3 | |
| # convert logits to indices | |
| xrec = torch.argmax(xrec, dim=1, keepdim=True) | |
| xrec = F.one_hot(xrec, num_classes=x.shape[1]) | |
| xrec = xrec.squeeze(1).permute(0, 3, 1, 2).float() | |
| x = self.to_rgb(x) | |
| xrec = self.to_rgb(xrec) | |
| log["inputs"] = x | |
| log["reconstructions"] = xrec | |
| return log | |
| class VQNoDiscModel(VQModel): | |
| def __init__(self, | |
| ddconfig, | |
| lossconfig, | |
| n_embed, | |
| embed_dim, | |
| ckpt_path=None, | |
| ignore_keys=[], | |
| image_key="image", | |
| colorize_nlabels=None | |
| ): | |
| super().__init__(ddconfig=ddconfig, lossconfig=lossconfig, n_embed=n_embed, embed_dim=embed_dim, | |
| ckpt_path=ckpt_path, ignore_keys=ignore_keys, image_key=image_key, | |
| colorize_nlabels=colorize_nlabels) | |
| def training_step(self, batch, batch_idx): | |
| x = self.get_input(batch, self.image_key) | |
| xrec, qloss = self(x) | |
| # autoencode | |
| aeloss, log_dict_ae = self.loss(qloss, x, xrec, self.global_step, split="train") | |
| output = pl.TrainResult(minimize=aeloss) | |
| output.log("train/aeloss", aeloss, | |
| prog_bar=True, logger=True, on_step=True, on_epoch=True) | |
| output.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True) | |
| return output | |
| def validation_step(self, batch, batch_idx): | |
| x = self.get_input(batch, self.image_key) | |
| xrec, qloss = self(x) | |
| aeloss, log_dict_ae = self.loss(qloss, x, xrec, self.global_step, split="val") | |
| rec_loss = log_dict_ae["val/rec_loss"] | |
| output = pl.EvalResult(checkpoint_on=rec_loss) | |
| output.log("val/rec_loss", rec_loss, | |
| prog_bar=True, logger=True, on_step=True, on_epoch=True) | |
| output.log("val/aeloss", aeloss, | |
| prog_bar=True, logger=True, on_step=True, on_epoch=True) | |
| output.log_dict(log_dict_ae) | |
| return output | |
| def configure_optimizers(self): | |
| optimizer = torch.optim.Adam(list(self.encoder.parameters())+ | |
| list(self.decoder.parameters())+ | |
| list(self.quantize.parameters())+ | |
| list(self.quant_conv.parameters())+ | |
| list(self.post_quant_conv.parameters()), | |
| lr=self.learning_rate, betas=(0.5, 0.9)) | |
| return optimizer | |
| class GumbelVQ(VQModel): | |
| def __init__(self, | |
| ddconfig, | |
| lossconfig, | |
| n_embed, | |
| embed_dim, | |
| temperature_scheduler_config, | |
| ckpt_path=None, | |
| ignore_keys=[], | |
| image_key="image", | |
| colorize_nlabels=None, | |
| monitor=None, | |
| kl_weight=1e-8, | |
| remap=None, | |
| ): | |
| z_channels = ddconfig["z_channels"] | |
| super().__init__(ddconfig, | |
| lossconfig, | |
| n_embed, | |
| embed_dim, | |
| ckpt_path=None, | |
| ignore_keys=ignore_keys, | |
| image_key=image_key, | |
| colorize_nlabels=colorize_nlabels, | |
| monitor=monitor, | |
| ) | |
| self.loss.n_classes = n_embed | |
| self.vocab_size = n_embed | |
| self.quantize = GumbelQuantize(z_channels, embed_dim, | |
| n_embed=n_embed, | |
| kl_weight=kl_weight, temp_init=1.0, | |
| remap=remap) | |
| self.temperature_scheduler = instantiate_from_config(temperature_scheduler_config) # annealing of temp | |
| if ckpt_path is not None: | |
| self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys) | |
| def temperature_scheduling(self): | |
| self.quantize.temperature = self.temperature_scheduler(self.global_step) | |
| def encode_to_prequant(self, x): | |
| h = self.encoder(x) | |
| h = self.quant_conv(h) | |
| return h | |
| def decode_code(self, code_b): | |
| raise NotImplementedError | |
| def training_step(self, batch, batch_idx, optimizer_idx): | |
| self.temperature_scheduling() | |
| x = self.get_input(batch, self.image_key) | |
| xrec, qloss = self(x) | |
| if optimizer_idx == 0: | |
| # autoencode | |
| aeloss, log_dict_ae = self.loss(qloss, x, xrec, optimizer_idx, self.global_step, | |
| last_layer=self.get_last_layer(), split="train") | |
| self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True) | |
| self.log("temperature", self.quantize.temperature, prog_bar=False, logger=True, on_step=True, on_epoch=True) | |
| return aeloss | |
| if optimizer_idx == 1: | |
| # discriminator | |
| discloss, log_dict_disc = self.loss(qloss, x, xrec, optimizer_idx, self.global_step, | |
| last_layer=self.get_last_layer(), split="train") | |
| self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=True) | |
| return discloss | |
| def validation_step(self, batch, batch_idx): | |
| x = self.get_input(batch, self.image_key) | |
| xrec, qloss = self(x, return_pred_indices=True) | |
| aeloss, log_dict_ae = self.loss(qloss, x, xrec, 0, self.global_step, | |
| last_layer=self.get_last_layer(), split="val") | |
| discloss, log_dict_disc = self.loss(qloss, x, xrec, 1, self.global_step, | |
| last_layer=self.get_last_layer(), split="val") | |
| rec_loss = log_dict_ae["val/rec_loss"] | |
| self.log("val/rec_loss", rec_loss, | |
| prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True) | |
| self.log("val/aeloss", aeloss, | |
| prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True) | |
| self.log_dict(log_dict_ae) | |
| self.log_dict(log_dict_disc) | |
| return self.log_dict | |
| def log_images(self, batch, **kwargs): | |
| log = dict() | |
| x = self.get_input(batch, self.image_key) | |
| x = x.to(self.device) | |
| # encode | |
| h = self.encoder(x) | |
| h = self.quant_conv(h) | |
| quant, _, _ = self.quantize(h) | |
| # decode | |
| x_rec = self.decode(quant) | |
| log["inputs"] = x | |
| log["reconstructions"] = x_rec | |
| return log | |
| class EMAVQ(VQModel): | |
| def __init__(self, | |
| ddconfig, | |
| lossconfig, | |
| n_embed, | |
| embed_dim, | |
| ckpt_path=None, | |
| ignore_keys=[], | |
| image_key="image", | |
| colorize_nlabels=None, | |
| monitor=None, | |
| remap=None, | |
| sane_index_shape=False, # tell vector quantizer to return indices as bhw | |
| ): | |
| super().__init__(ddconfig, | |
| lossconfig, | |
| n_embed, | |
| embed_dim, | |
| ckpt_path=None, | |
| ignore_keys=ignore_keys, | |
| image_key=image_key, | |
| colorize_nlabels=colorize_nlabels, | |
| monitor=monitor, | |
| ) | |
| self.quantize = EMAVectorQuantizer(n_embed=n_embed, | |
| embedding_dim=embed_dim, | |
| beta=0.25, | |
| remap=remap) | |
| def configure_optimizers(self): | |
| lr = self.learning_rate | |
| #Remove self.quantize from parameter list since it is updated via EMA | |
| opt_ae = torch.optim.Adam(list(self.encoder.parameters())+ | |
| list(self.decoder.parameters())+ | |
| list(self.quant_conv.parameters())+ | |
| list(self.post_quant_conv.parameters()), | |
| lr=lr, betas=(0.5, 0.9)) | |
| opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(), | |
| lr=lr, betas=(0.5, 0.9)) | |
| return [opt_ae, opt_disc], [] |