Spaces:
Runtime error
Runtime error
File size: 5,982 Bytes
a220803 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
# import numpy as np
# import torch
# import torch.nn as nn
# from math import pi
# from einops import rearrange, repeat
#
# #################################################################################
# # Sine/Cosine Positional Embedding Functions #
# #################################################################################
# # https://github.com/facebookresearch/mae/blob/main/util/pos_embed.py
#
# def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False, extra_tokens=0):
# """
# grid_size: int of the grid height and width
# return:
# pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
# """
# grid_h = np.arange(grid_size, dtype=np.float32)
# grid_w = np.arange(grid_size, dtype=np.float32)
# grid = np.meshgrid(grid_w, grid_h) # here w goes first
# grid = np.stack(grid, axis=0)
#
# grid = grid.reshape([2, 1, grid_size, grid_size])
# pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
# if cls_token and extra_tokens > 0:
# pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0)
# return pos_embed
#
#
# def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
# assert embed_dim % 2 == 0
#
# # use half of dimensions to encode grid_h
# emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0])
# emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1])
#
# emb = np.concatenate([emb_h, emb_w], axis=1)
# return emb
#
#
# def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
# """
# embed_dim: output dimension for each position
# pos: a list of positions to be encoded: size (M,)
# out: (M, D)
# """
# assert embed_dim % 2 == 0
# omega = np.arange(embed_dim // 2, dtype=np.float64)
# omega /= embed_dim / 2.
# omega = 1. / 10000**omega
#
# pos = pos.reshape(-1)
# out = np.einsum('m,d->md', pos, omega)
#
# emb_sin = np.sin(out)
# emb_cos = np.cos(out)
#
# emb = np.concatenate([emb_sin, emb_cos], axis=1)
# return emb
#
# def broadcat(tensors, dim=-1):
# num_tensors = len(tensors)
# shape_lens = set(list(map(lambda t: len(t.shape), tensors)))
# assert len(shape_lens) == 1, 'tensors must all have the same number of dimensions'
# shape_len = list(shape_lens)[0]
# dim = (dim + shape_len) if dim < 0 else dim
# dims = list(zip(*map(lambda t: list(t.shape), tensors)))
# expandable_dims = [(i, val) for i, val in enumerate(dims) if i != dim]
# assert all([*map(lambda t: len(set(t[1])) <= 2, expandable_dims)]), 'invalid dimensions for broadcastable concatentation'
# max_dims = list(map(lambda t: (t[0], max(t[1])), expandable_dims))
# expanded_dims = list(map(lambda t: (t[0], (t[1],) * num_tensors), max_dims))
# expanded_dims.insert(dim, (dim, dims[dim]))
# expandable_shapes = list(zip(*map(lambda t: t[1], expanded_dims)))
# tensors = list(map(lambda t: t[0].expand(*t[1]), zip(tensors, expandable_shapes)))
# return torch.cat(tensors, dim=dim)
#
#
# def rotate_half(x):
# x = rearrange(x, '... (d r) -> ... d r', r=2)
# x1, x2 = x.unbind(dim=-1)
# x = torch.stack((-x2, x1), dim=-1)
# return rearrange(x, '... d r -> ... (d r)')
#
# #################################################################################
# # VisionRotary #
# #################################################################################
# # References:
# # EVA: https://github.com/baaivision/EVA
# # Transformer升级之路:2、博采众长的旋转式位置编码: https://spaces.ac.cn/archives/8265
# # Transformer升级之路:4、二维位置的旋转式位置编码: https://spaces.ac.cn/archives/8397
#
# class VisionRotaryEmbeddingFast(nn.Module):
# def __init__(
# self,
# dim,
# pt_hw=(int, int), # (H, W)
# ft_hw=None,
# custom_freqs = None,
# freqs_for = 'lang',
# theta = 10000,
# max_freq = 10,
# num_freqs = 1,
# ):
# super().__init__()
# # Unlike a 1d RoPE, a 2d RoPE requires splitting the dimension into four parts
# # References: https://spaces.ac.cn/archives/8397
#
# if custom_freqs:
# freqs = custom_freqs
# elif freqs_for == 'lang':
# freqs = 1. / (theta ** (torch.arange(0, dim, 2)[:(dim // 2)].float() / dim))
# elif freqs_for == 'pixel':
# freqs = torch.linspace(1., max_freq / 2, dim // 2) * pi
# elif freqs_for == 'constant':
# freqs = torch.ones(num_freqs).float()
# else:
# raise ValueError(f'unknown modality {freqs_for}')
#
# if ft_hw is None: ft_hw = pt_hw
# h_t = torch.arange(ft_hw[0]) / ft_hw[0] * pt_hw[0]
# w_t = torch.arange(ft_hw[1]) / ft_hw[1] * pt_hw[1]
#
# h_freqs = torch.einsum('..., f -> ... f', h_t, freqs)
# w_freqs = torch.einsum('..., f -> ... f', w_t, freqs)
#
# h_freqs = repeat(h_freqs, '... n -> ... (n r)', r=2)
# w_freqs = repeat(w_freqs, '... n -> ... (n r)', r=2)
#
# freqs = broadcat((h_freqs[:, None, :], w_freqs[None, :, :]), dim=-1)
# freqs_cos = freqs.cos().view(-1, freqs.shape[-1])
# freqs_sin = freqs.sin().view(-1, freqs.shape[-1])
#
# self.register_buffer("freqs_cos", freqs_cos)
# self.register_buffer("freqs_sin", freqs_sin)
#
# def forward(self, t):
# # 2d RoPE: [[cos(h*theta), -sin(h*theta), 0, 0 ],
# # [sin(h*theta), cos(h*theta), 0, 0 ],
# # [0, 0, cos(w*theta), -sin(w*theta)],
# # [0, 0, sin(w*theta), cos(w*theta) ],]
#
# return t * self.freqs_cos + rotate_half(t) * self.freqs_sin |