from imports import * import importlib.util import os import sys import joblib sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), ))) # from hmv_cfg_base_stage1.model1 import load_model as load_model1 # from hmv_cfg_base_stage1.model1 import predict as predict1 BASE_DIR = os.path.dirname(os.path.abspath(__file__)) CONFIG_STAGE1 = os.path.join(BASE_DIR, "config", "stage1_models.json") LOADERS_STAGE1 = os.path.join(BASE_DIR, "hmv-cfg-base-stage1") # Load the model and tokenizer # model_name = "tachygraphy-microtrext-norm-org/DeBERTa-v3-seqClassfication-LV1-SentimentPolarities-Batch8" # tokenizer = AutoTokenizer.from_pretrained(model_name) # model = AutoModel.from_pretrained(model_name) SENTIMENT_POLARITY_LABELS = [ "negative", "neutral", "positive" ] current_model = None current_tokenizer = None # Enabling Resource caching @st.cache_resource def load_model_config(): with open(CONFIG_STAGE1, "r") as f: model_data = json.load(f) model_options = {v["name"]: v for v in model_data.values()} # Extract names for dropdown return model_data, model_options MODEL_DATA, MODEL_OPTIONS = load_model_config() # def load_model(): # model = DebertaV2ForSequenceClassification.from_pretrained(model_name) # tokenizer = DebertaV2Tokenizer.from_pretrained(model_name) # return model, tokenizer # ✅ Dynamically Import Model Functions def import_from_module(module_name, function_name): try: module = importlib.import_module(module_name) return getattr(module, function_name) except (ModuleNotFoundError, AttributeError) as e: st.error(f"❌ Import Error: {e}") return None def free_memory(): # """Free up CPU & GPU memory before loading a new model.""" global current_model, current_tokenizer if current_model is not None: del current_model # Delete the existing model current_model = None # Reset reference if current_tokenizer is not None: del current_tokenizer # Delete the tokenizer current_tokenizer = None gc.collect() # Force garbage collection for CPU memory if torch.cuda.is_available(): torch.cuda.empty_cache() # Free GPU memory torch.cuda.ipc_collect() # Clean up PyTorch GPU cache # If running on CPU, reclaim memory using OS-level commands try: if torch.cuda.is_available() is False: psutil.virtual_memory() # Refresh memory stats except Exception as e: print(f"Memory cleanup error: {e}") def load_selected_model(model_name): global current_model, current_tokenizer free_memory() # st.write("DEBUG: Available Models:", MODEL_OPTIONS.keys()) # ✅ See available models # st.write("DEBUG: Selected Model:", MODEL_OPTIONS[model_name]) # ✅ Check selected model # st.write("DEBUG: Model Name:", model_name) # ✅ Check selected model if model_name not in MODEL_OPTIONS: st.error(f"⚠️ Model '{model_name}' not found in config!") return None, None, None model_info = MODEL_OPTIONS[model_name] hf_location = model_info["hf_location"] model_module = model_info["module_path"] load_function = model_info["load_function"] predict_function = model_info["predict_function"] load_model_func = import_from_module(model_module, load_function) predict_func = import_from_module(model_module, predict_function) if load_model_func is None or predict_func is None: st.error("❌ Model functions could not be loaded!") return None, None, None model, tokenizer = load_model_func() current_model, current_tokenizer = model, tokenizer return model, tokenizer, predict_func # def load_selected_model(model_name): # # """Load model and tokenizer based on user selection.""" # global current_model, current_tokenizer # # Free memory before loading a new model # free_memory() # if model_name not in MODEL_OPTIONS: # st.error(f"⚠️ Model '{model_name}' not found in config!") # return None, None # model_info = MODEL_OPTIONS[model_name] # hf_location = model_info["hf_location"] # model_module = model_info["module_path"] # # load_function = "load_model" # # predict_function = "predict" # load_function = model_info["load_function"] # predict_function = model_info["predict_function"] # # tokenizer_class = globals()[model_info["tokenizer_class"]] # # model_class = globals()[model_info["model_class"]] # # tokenizer = tokenizer_class.from_pretrained(hf_location) # load_model_func = import_from_module(model_module, load_function) # predict_func = import_from_module(model_module, predict_function) # # # Load model # # if model_info["type"] == "custom_checkpoint" or model_info["type"] == "custom_model": # # model = torch.load(hf_location, map_location="cpu") # Load PyTorch model # # elif model_info["type"] == "hf_automodel_finetuned_dbt3": # # tokenizer_class = globals()[model_info["tokenizer_class"]] # # model_class = globals()[model_info["model_class"]] # # tokenizer = tokenizer_class.from_pretrained(hf_location) # # model = model_class.from_pretrained(hf_location, # # problem_type=model_info["problem_type"], # # num_labels=model_info["num_labels"] # # ) # # else: # # st.error("Invalid model selection") # # return None, None # if load_model_func is None or predict_func is None: # st.error("❌ Model functions could not be loaded!") # return None, None # # current_model, current_tokenizer = model, tokenizer # Store references # # return model, tokenizer # model, tokenizer = load_model_func(hf_location) # current_model, current_tokenizer = model, tokenizer # return model, tokenizer, predict_func def predict(text, model, tokenizer, device, max_len=128): # Tokenize and pad the input text inputs = tokenizer( text, add_special_tokens=True, padding=True, truncation=False, return_tensors="pt", return_token_type_ids=False, ).to(device) # Move input tensors to the correct device with torch.no_grad(): outputs = model(**inputs) # Apply sigmoid activation (for BCEWithLogitsLoss) probabilities = outputs.logits.cpu().numpy() return probabilities # def show_sentiment_analysis(): # Add your sentiment analysis code here # user_input = st.text_input("Enter text for sentiment analysis:") # user_input = st.text_area("Enter text for sentiment analysis:", height=200) # user_input = st.text_area("Enter text for sentiment analysis:", max_chars=500) def show_sentiment_analysis(): st.title("Stage 1: Sentiment Polarity Analysis") st.write("This section will handle sentiment analysis.") if "selected_model" not in st.session_state: st.session_state.selected_model = list(MODEL_OPTIONS.keys())[0] # Default selection if "clear_output" not in st.session_state: st.session_state.clear_output = False st.selectbox("Choose a model:", list(MODEL_OPTIONS.keys()), key="selected_model") selected_model = st.session_state.selected_model if selected_model not in MODEL_OPTIONS: st.error(f"❌ Selected model '{selected_model}' not found!") st.stop() st.session_state.clear_output = True # Reset output when model changes # st.write("DEBUG: Available Models:", MODEL_OPTIONS.keys()) # ✅ See available models # st.write("DEBUG: Selected Model:", MODEL_OPTIONS[selected_model]) # ✅ Check selected model user_input = st.text_input("Enter text for sentiment analysis:") if user_input: # Make prediction # model, tokenizer = load_model() # model, tokenizer = load_selected_model(selected_model) model, tokenizer, predict_func = load_selected_model(selected_model) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") if model is None: st.error("⚠️ Error: Model failed to load! Check model selection or configuration.") st.stop() model.to(device) # predictions = predict(user_input, model, tokenizer, device) predictions = predict_func(user_input, model, tokenizer, device) # Squeeze predictions to remove extra dimensions predictions_array = predictions.squeeze() # Convert to binary predictions (argmax) binary_predictions = np.zeros_like(predictions_array) max_indices = np.argmax(predictions_array) binary_predictions[max_indices] = 1 # Display raw predictions st.write(f"**Predicted Sentiment Scores:** {predictions_array}") # Display binary classification result st.write(f"**Predicted Sentiment:**") st.write(f"**NEGATIVE:** {binary_predictions[0]}, **NEUTRAL:** {binary_predictions[1]}, **POSITIVE:** {binary_predictions[2]}") # st.write(f"**NEUTRAL:** {binary_predictions[1]}") # st.write(f"**POSITIVE:** {binary_predictions[2]}") # 1️⃣ **Polar Plot (Plotly)** sentiment_polarities = predictions_array.tolist() fig_polar = px.line_polar( pd.DataFrame(dict(r=sentiment_polarities, theta=SENTIMENT_POLARITY_LABELS)), r='r', theta='theta', line_close=True ) st.plotly_chart(fig_polar) # 2️⃣ **Normalized Horizontal Bar Chart (Matplotlib)** normalized_predictions = predictions_array / predictions_array.sum() fig, ax = plt.subplots(figsize=(8, 2)) left = 0 for i in range(len(normalized_predictions)): ax.barh(0, normalized_predictions[i], color=plt.cm.tab10(i), left=left, label=SENTIMENT_POLARITY_LABELS[i]) left += normalized_predictions[i] # Configure the chart ax.set_xlim(0, 1) ax.set_yticks([]) ax.set_xticks(np.arange(0, 1.1, 0.1)) ax.legend(loc='upper center', bbox_to_anchor=(0.5, -0.15), ncol=len(SENTIMENT_POLARITY_LABELS)) plt.title("Sentiment Polarity Prediction Distribution") # Display in Streamlit st.pyplot(fig) if __name__ == "__main__": show_sentiment_analysis()