import gc import psutil import torch import shutil from transformers.utils.hub import TRANSFORMERS_CACHE import streamlit as st import os import sys sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), ))) def free_memory(): # """Free up CPU & GPU memory before loading a new model.""" # global current_model, current_tokenizer # if current_model is not None: # del current_model # Delete the existing model # current_model = None # Reset reference # if current_tokenizer is not None: # del current_tokenizer # Delete the tokenizer # current_tokenizer = None gc.collect() # Force garbage collection for CPU memory if torch.cuda.is_available(): torch.cuda.empty_cache() # Free GPU memory torch.cuda.ipc_collect() # Clean up PyTorch GPU cache # If running on CPU, reclaim memory using OS-level commands try: if torch.cuda.is_available() is False: psutil.virtual_memory() # Refresh memory stats except Exception as e: print(f"Memory cleanup error: {e}") # Delete cached Hugging Face models try: cache_dir = TRANSFORMERS_CACHE if os.path.exists(cache_dir): shutil.rmtree(cache_dir) print("Cache cleared!") except Exception as e: print(f"❌ Cache cleanup error: {e}") def create_footer(): st.divider() # 🛠️ Layout using Streamlit columns col1, col2, col3 = st.columns([1, 1, 1]) # 🚀 Contributors Section with col1: st.markdown("### 🚀 Contributors") st.write("**Archisman Karmakar**") st.write("[🔗 LinkedIn](https://www.linkedin.com/in/archismankarmakar/) | [🐙 GitHub](https://www.github.com/ArchismanKarmakar) | [📊 Kaggle](https://www.kaggle.com/archismancoder)") st.write("**Sumon Chatterjee**") st.write("[🔗 LinkedIn](https://www.linkedin.com/in/sumon-chatterjee-3b3b43227) | [🐙 GitHub](https://github.com/Sumon670) | [📊 Kaggle](https://www.kaggle.com/sumonchatterjee)") # 🎓 Mentors Section with col2: st.markdown("### 🎓 Mentors") st.write("**Prof. Anupam Mondal**") st.write("[🔗 LinkedIn](https://www.linkedin.com/in/anupam-mondal-ph-d-8a7a1a39/) | [📚 Google Scholar](https://scholar.google.com/citations?user=ESRR9o4AAAAJ&hl=en) | [🌐 Website](https://sites.google.com/view/anupammondal/home)") st.write("**Prof. Sainik Kumar Mahata**") st.write("[🔗 LinkedIn](https://www.linkedin.com/in/mahatasainikk) | [📚 Google Scholar](https://scholar.google.co.in/citations?user=OcJDM50AAAAJ&hl=en) | [🌐 Website](https://sites.google.com/view/sainik-kumar-mahata/home)") # 📌 Research Project Info Section with col3: st.markdown("### 📝 About the Project") st.write("This is our research project for our **B.Tech final year** and a **journal** which is yet to be published.") st.write("Built with 💙 using **Streamlit**.") # 🚀 Display Footer def show_dashboard(): # free_memory() st.title("Tachygraphy Micro-text Analysis & Normalization") st.write(""" Welcome to the Tachygraphy Micro-text Analysis & Normalization Project. This application is designed to analyze text data through three stages: 1. Sentiment Polarity Analysis 2. Emotion Mood-tag Analysis 3. Text Transformation & Normalization """) st.write(""" - Training Source: [GitHub @ Tachygraphy Micro-text Analysis & Normalization](https://github.com/ArchismanKarmakar/Tachygraphy-Microtext-Analysis-And-Normalization) - Kaggle Collections: [Kaggle @ Tachygraphy Micro-text Analysis & Normalization](https://www.kaggle.com/datasets/archismancoder/dataset-tachygraphy/data?select=Tachygraphy_MicroText-AIO-V3.xlsx) - Hugging Face Org: [Hugging Face @ Tachygraphy Micro-text Analysis & Normalization](https://huggingface.co/tachygraphy-microtext-normalization-iemk) - Deployment Source: [GitHub](https://github.com/ArchismanKarmakar/Tachygraphy-Microtext-Analysis-And-Normalization-Deployment-Source-HuggingFace_Streamlit_JPX14032025) - Streamlit Deployemnt: [Streamlit](https://tachygraphy-microtext.streamlit.app/) - Hugging Face Space Deployment: [Hugging Face Space](https://huggingface.co/spaces/tachygraphy-microtext-normalization-iemk/Tachygraphy-Microtext-Analysis-and-Normalization-ArchismanCoder) """) create_footer() def __main__(): show_dashboard()