Archisman Karmakar commited on
Commit
f36e1ca
·
1 Parent(s): c305e3e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +181 -0
README.md CHANGED
@@ -34,3 +34,184 @@ short_description: This project focuses on the Tachygraphy Microtext Analysis
34
  --- -->
35
 
36
  # Tachygraphy-Microtext-Analysis-And-Normalization-Deployment-Source-HuggingFace_Streamlit_JPX14032025
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
  --- -->
35
 
36
  # Tachygraphy-Microtext-Analysis-And-Normalization-Deployment-Source-HuggingFace_Streamlit_JPX14032025
37
+
38
+
39
+ # Tachygraphy Micro-text Analysis And Normalization
40
+ <!---
41
+ ---
42
+ title: "Tachygraphy Micro-text Analysis & Normalization"
43
+ emoji: "⚡"
44
+ colorFrom: "pink"
45
+ colorTo: "blue"
46
+ sdk: "static"
47
+ pinned: false
48
+ ---
49
+ --->
50
+
51
+ <!-- ---
52
+ title: README
53
+ emoji: 😻
54
+ colorFrom: yellow
55
+ colorTo: red
56
+ sdk: static
57
+ pinned: false
58
+ ---
59
+ -->
60
+
61
+ <div align="center">
62
+
63
+ <!-- ![Project Logo](https://via.placeholder.com/150) -->
64
+
65
+ # Tachygraphy Micro-text Analysis & Normalization
66
+
67
+ *Welcome to the Tachygraphy Micro-text Analysis & Normalization Project. This page outlines our project’s key stages, sources, sample analysis examples, and team information.*
68
+
69
+ </div>
70
+
71
+ ---
72
+
73
+ ## Dashboard
74
+
75
+ ### Project Stages
76
+
77
+ 1. **Sentiment Polarity Analysis**
78
+ 2. **Emotion Mood-tag Analysis**
79
+ 3. **Text Transformation & Normalization**
80
+ 4. **Stacked all 3 stages with their best models**
81
+ 5. **Data Correction & Collection**
82
+
83
+ ### Sources & Deployment Links
84
+
85
+ | **Training Source** | **Kaggle Collections** | **Hugging Face Org** |
86
+ | ------------------- | ---------------------- | -------------------- |
87
+ | [GitHub @ Tachygraphy Micro-text Analysis & Normalization](https://github.com/ArchismanKarmakar/Tachygraphy-Microtext-Analysis-And-Normalization) | [Kaggle Dataset](https://www.kaggle.com/datasets/archismancoder/dataset-tachygraphy/data?select=Tachygraphy_MicroText-AIO-V3.xlsx) | [Hugging Face @ Tachygraphy Micro-text Normalization](https://huggingface.co/Tachygraphy-Microtext-Normalization-IEMK25) |
88
+
89
+ | **Deployment Source** | **Streamlit Deployment** | **Hugging Face Space Deployment** |
90
+ | --------------------- | ------------------------ | --------------------------------- |
91
+ | [GitHub Deployment Repo](https://github.com/ArchismanKarmakar/Tachygraphy-Microtext-Analysis-And-Normalization-Deployment-Source-HuggingFace_Streamlit_JPX14032025) | [Streamlit App](https://tachygraphy-microtext.streamlit.app/) | [Hugging Face Space](https://huggingface.co/spaces/Tachygraphy-Microtext-Normalization-IEMK25/Tachygraphy-Microtext-Analysis-and-Normalization-ArchismanCoder) |
92
+
93
+ ---
94
+
95
+ ## Project Overview
96
+
97
+ Tachygraphy—originally developed to expedite writing—has evolved over centuries. In the 1990s, it reappeared as micro‑text, driving faster communication on social media with its “Anytime, Anyplace, Anybody, and Anything (4A)” characteristic. This project focuses on the analysis and normalization of micro‑text (the prevalent informal communication today) to improve NLP tasks such as sentiment analysis, emotion detection, and overall text transformation for clear 4A message decoding.
98
+
99
+ ---
100
+
101
+
102
+ ### Sample Example 1
103
+ ```mermaid
104
+ graph TD;
105
+ %% Input and normalized text nodes
106
+ A["Input Text: i don't know fr y he's sooo sad"]
107
+ B["Normalized Text: i do not know for real why he's so sad"]
108
+ C["Sentiment"]
109
+
110
+ A --> B
111
+ A -->|Sentiment| C
112
+
113
+ %% Sentiment value nodes (values inside the boxes)
114
+ C -->|Negative| D["0.99587"]
115
+ C -->|Neutral| E["6.23e-05"]
116
+ C -->|Positive| F["2.10e-05"]
117
+
118
+ %% Converge sentiment nodes to Emotion stage
119
+ D -->|Emotion| G
120
+ E -->|Emotion| G
121
+ F -->|Emotion| G
122
+
123
+ G["Emotion"]
124
+
125
+ %% Emotion nodes: arrow labels show emotion category; node boxes show numeric values.
126
+ G -->|Anger| H["0.0"]
127
+ G -->|Disgust| I["0.0"]
128
+ G -->|Fear| J["0.01028"]
129
+ G -->|Joy| K["0.0"]
130
+ G -->|Neutral| L["0.02194"]
131
+ G -->|Sadness| M["1.0"]
132
+ G -->|Surprise| N["0.02158"]
133
+ A -->|Emotion| G
134
+
135
+ %% Style the Neutral and Positive sentiment arrows with a lighter stroke.
136
+ linkStyle 6 stroke:#cccccc, stroke-width:1px;
137
+ linkStyle 7 stroke:#cccccc, stroke-width:1px;
138
+
139
+ ```
140
+
141
+ ### Sample Example 2
142
+ ```mermaid
143
+ graph LR;
144
+ %% Input and normalized text nodes
145
+ A["Input Text: you rlly think all that talk means u tough? lol, when I step up, u ain't gon say sh*t"]
146
+ B["Normalized Text: you really think all that talk makes you tough [lol](laughed out loud) when i step up you are not going to say anything"]
147
+ C["Sentiment"]
148
+
149
+ A --> B
150
+ A -->|Sentiment| C
151
+
152
+ %% Sentiment value nodes
153
+ C -->|Negative| D["0.99999"]
154
+ C -->|Neutral| E["6.89e-06"]
155
+ C -->|Positive| F["1.11e-05"]
156
+
157
+ %% Converge sentiment nodes to Emotion stage
158
+ D -->|Emotion| G
159
+ E -->|Emotion| G
160
+ F -->|Emotion| G
161
+
162
+ G["Emotion"]
163
+
164
+ %% Emotion nodes: arrow labels show emotion category; nodes show numeric values.
165
+ G -->|Anger| H["0.14403"]
166
+ G -->|Disgust| I["0.03928"]
167
+ G -->|Fear| J["0.01435"]
168
+ G -->|Joy| K["0.04897"]
169
+ G -->|Neutral| L["0.49485"]
170
+ G -->|Sadness| M["0.02111"]
171
+ G -->|Surprise| N["0.23741"]
172
+ A -->|Emotion| G
173
+
174
+ %% Style the Neutral and Positive sentiment arrows with a lighter stroke.
175
+ linkStyle 6 stroke:#cccccc, stroke-width:1px;
176
+ linkStyle 7 stroke:#cccccc, stroke-width:1px;
177
+ ```
178
+
179
+ ### Sample Example 3
180
+ ```mermaid
181
+ graph TD;
182
+ %% Input and normalized text nodes
183
+ A["Input Text: bruh, floods in Kerala, rescue ops non‑stop 🚁"]
184
+ B["Normalized Text: Brother, the floods in Kerala are severe, and rescue operations are ongoing continuously."]
185
+ C["Sentiment"]
186
+
187
+ A --> B
188
+ A -->|Sentiment| C
189
+
190
+ %% Sentiment value nodes
191
+ C -->|Negative| D["4.44e-05"]
192
+ C -->|Neutral| E["0.99989"]
193
+ C -->|Positive| F["7.10e-05"]
194
+
195
+ %% Converge sentiment nodes to Emotion stage
196
+ D -->|Emotion| G
197
+ E -->|Emotion| G
198
+ F -->|Emotion| G
199
+
200
+ G["Emotion"]
201
+
202
+ %% Emotion nodes: arrow labels show emotion category; node boxes show numeric values.
203
+ G -->|Anger| H["0.08018"]
204
+ G -->|Disgust| I["0.01526"]
205
+ G -->|Fear| J["0.60187"]
206
+ G -->|Joy| K["0.00411"]
207
+ G -->|Neutral| L["0.02194"]
208
+ G -->|Sadness| M["1.0"]
209
+ G -->|Surprise| N["0.02158"]
210
+ A -->|Emotion| G
211
+
212
+ %% Style the Neutral and Positive sentiment arrows with a lighter stroke.
213
+ linkStyle 5 stroke:#cccccc, stroke-width:1px;
214
+ linkStyle 7 stroke:#cccccc, stroke-width:1px;
215
+
216
+ ```
217
+