Archisman Karmakar commited on
Commit
270fc78
·
1 Parent(s): 2e89a9b

2025.03.24.post1

Browse files
dashboard.py CHANGED
@@ -46,7 +46,7 @@ def free_memory():
46
 
47
  def create_sample_example1():
48
  st.write("""
49
- ## Sample Example 1
50
  """)
51
  graph = """
52
  digraph {
@@ -64,7 +64,7 @@ def create_sample_example1():
64
  Disgust [label="Disgust: 0.015257259", fillcolor="#deffe1", fontcolor="black"];
65
  Fear [label="Fear: 0.601871967", fillcolor="#deffe1", fontcolor="black"];
66
  Joy [label="Joy: 0.00410547", fillcolor="#deffe1", fontcolor="black"];
67
- NeutralE [label="Neutral: 0.0341026", fillcolor="#deffe1", fontcolor="black"];
68
  Sadness [label="Sadness: 0.245294735", fillcolor="#deffe1", fontcolor="black"];
69
  Surprise [label="Surprise: 0.019189769", fillcolor="#deffe1", fontcolor="black"];
70
 
@@ -74,13 +74,14 @@ def create_sample_example1():
74
  // Establish the tree structure
75
  Input -> Output;
76
  Input -> Sentiment;
77
- Sentiment -> Anger;
78
- Sentiment -> Disgust;
79
- Sentiment -> Fear;
80
- Sentiment -> Joy;
81
- Sentiment -> NeutralE;
82
- Sentiment -> Sadness;
83
- Sentiment -> Surprise;
 
84
  }
85
  """
86
  st.graphviz_chart(graph)
@@ -88,7 +89,7 @@ def create_sample_example1():
88
 
89
  def create_sample_example2():
90
  st.write("""
91
- ## Sample Example 2
92
  """)
93
  graph = """
94
  digraph {
@@ -98,7 +99,7 @@ def create_sample_example2():
98
 
99
  // Define nodes with custom colors
100
  Input [label="Input:\nu rlly think all that talk means u tough? lol, when I step up, u ain't gon say sh*t", fillcolor="#ffe6de", fontcolor="black"];
101
- Output [label="Output:\nyou really think all that talk makes you tough lol when i step up you are not going to say anything", fillcolor="#ffe6de", fontcolor="black"];
102
  Sentiment [label="Sentiment:\nNEGATIVE", fillcolor="#ecdeff", fontcolor="black"];
103
 
104
  // Emotion nodes with a uniform style
@@ -106,7 +107,7 @@ def create_sample_example2():
106
  Disgust [label="Disgust: 0.039282672", fillcolor="#deffe1", fontcolor="black"];
107
  Fear [label="Fear: 0.014349542", fillcolor="#deffe1", fontcolor="black"];
108
  Joy [label="Joy: 0.048965044", fillcolor="#deffe1", fontcolor="black"];
109
- NeutralE [label="Neutral: 0.494852662", fillcolor="#deffe1", fontcolor="black"];
110
  Sadness [label="Sadness: 0.021111647", fillcolor="#deffe1", fontcolor="black"];
111
  Surprise [label="Surprise: 0.237405464", fillcolor="#deffe1", fontcolor="black"];
112
 
@@ -116,13 +117,14 @@ def create_sample_example2():
116
  // Establish the tree structure
117
  Input -> Output;
118
  Input -> Sentiment;
119
- Sentiment -> Anger;
120
- Sentiment -> Disgust;
121
- Sentiment -> Fear;
122
- Sentiment -> Joy;
123
- Sentiment -> NeutralE;
124
- Sentiment -> Sadness;
125
- Sentiment -> Surprise;
 
126
  }
127
  """
128
  st.graphviz_chart(graph)
@@ -147,19 +149,19 @@ def create_footer():
147
  # 🚀 Contributors Section
148
  with col1:
149
  st.markdown("### 🚀 Contributors")
150
- st.write("**Archisman Karmakar**")
151
  st.write("[🔗 LinkedIn](https://www.linkedin.com/in/archismankarmakar/) | [🐙 GitHub](https://www.github.com/ArchismanKarmakar) | [📊 Kaggle](https://www.kaggle.com/archismancoder)")
152
 
153
- st.write("**Sumon Chatterjee**")
154
  st.write("[🔗 LinkedIn](https://www.linkedin.com/in/sumon-chatterjee-3b3b43227) | [🐙 GitHub](https://github.com/Sumon670) | [📊 Kaggle](https://www.kaggle.com/sumonchatterjee)")
155
 
156
  # 🎓 Mentors Section
157
  with col2:
158
  st.markdown("### 🎓 Mentors")
159
- st.write("**Prof. Anupam Mondal**")
160
  st.write("[🔗 LinkedIn](https://www.linkedin.com/in/anupam-mondal-ph-d-8a7a1a39/) | [📚 Google Scholar](https://scholar.google.com/citations?user=ESRR9o4AAAAJ&hl=en) | [🌐 Website](https://sites.google.com/view/anupammondal/home)")
161
 
162
- st.write("**Prof. Sainik Kumar Mahata**")
163
  st.write("[��� LinkedIn](https://www.linkedin.com/in/mahatasainikk) | [📚 Google Scholar](https://scholar.google.co.in/citations?user=OcJDM50AAAAJ&hl=en) | [🌐 Website](https://sites.google.com/view/sainik-kumar-mahata/home)")
164
 
165
  # 📌 Research Project Info Section
@@ -174,21 +176,25 @@ def create_footer():
174
  def show_dashboard():
175
  # free_memory()
176
  st.title("Tachygraphy Micro-text Analysis & Normalization")
177
- st.write("""
178
- Welcome to the Tachygraphy Micro-text Analysis & Normalization Project. This application is designed to analyze text data through three stages:
179
- 1. Sentiment Polarity Analysis
180
- 2. Emotion Mood-tag Analysis
181
- 3. Text Transformation & Normalization
182
- """)
183
-
184
- st.write("""
185
- - Training Source: [GitHub @ Tachygraphy Micro-text Analysis & Normalization](https://github.com/ArchismanKarmakar/Tachygraphy-Microtext-Analysis-And-Normalization)
186
- - Kaggle Collections: [Kaggle @ Tachygraphy Micro-text Analysis & Normalization](https://www.kaggle.com/datasets/archismancoder/dataset-tachygraphy/data?select=Tachygraphy_MicroText-AIO-V3.xlsx)
187
- - Hugging Face Org: [Hugging Face @ Tachygraphy Micro-text Analysis & Normalization](https://huggingface.co/Tachygraphy-Microtext-Normalization-IEMK25)
188
- - Deployment Source: [GitHub](https://github.com/ArchismanKarmakar/Tachygraphy-Microtext-Analysis-And-Normalization-Deployment-Source-HuggingFace_Streamlit_JPX14032025)
189
- - Streamlit Deployemnt: [Streamlit](https://tachygraphy-microtext.streamlit.app/)
190
- - Hugging Face Space Deployment: [Hugging Face Space](https://huggingface.co/spaces/Tachygraphy-Microtext-Normalization-IEMK25/Tachygraphy-Microtext-Analysis-and-Normalization-ArchismanCoder)
191
- """)
 
 
 
 
192
 
193
  create_footer()
194
 
@@ -196,7 +202,7 @@ def show_dashboard():
196
 
197
  create_sample_example1()
198
 
199
- # create_sample_example2()
200
 
201
 
202
  def __main__():
 
46
 
47
  def create_sample_example1():
48
  st.write("""
49
+ #### Sample Example 1
50
  """)
51
  graph = """
52
  digraph {
 
64
  Disgust [label="Disgust: 0.015257259", fillcolor="#deffe1", fontcolor="black"];
65
  Fear [label="Fear: 0.601871967", fillcolor="#deffe1", fontcolor="black"];
66
  Joy [label="Joy: 0.00410547", fillcolor="#deffe1", fontcolor="black"];
67
+ Neutral [label="Neutral: 0.0341026", fillcolor="#deffe1", fontcolor="black"];
68
  Sadness [label="Sadness: 0.245294735", fillcolor="#deffe1", fontcolor="black"];
69
  Surprise [label="Surprise: 0.019189769", fillcolor="#deffe1", fontcolor="black"];
70
 
 
74
  // Establish the tree structure
75
  Input -> Output;
76
  Input -> Sentiment;
77
+ Sentiment -> Emotion
78
+ Emotion -> Anger;
79
+ Emotion -> Disgust;
80
+ Emotion -> Fear;
81
+ Emotion -> Joy;
82
+ Emotion -> Neutral;
83
+ Emotion -> Sadness;
84
+ Emotion -> Surprise;
85
  }
86
  """
87
  st.graphviz_chart(graph)
 
89
 
90
  def create_sample_example2():
91
  st.write("""
92
+ #### Sample Example 2
93
  """)
94
  graph = """
95
  digraph {
 
99
 
100
  // Define nodes with custom colors
101
  Input [label="Input:\nu rlly think all that talk means u tough? lol, when I step up, u ain't gon say sh*t", fillcolor="#ffe6de", fontcolor="black"];
102
+ Output [label="Output:\nyou really think all that talk makes you tough [lol](laughed out loud) when i step up you are not going to say anything", fillcolor="#ffe6de", fontcolor="black"];
103
  Sentiment [label="Sentiment:\nNEGATIVE", fillcolor="#ecdeff", fontcolor="black"];
104
 
105
  // Emotion nodes with a uniform style
 
107
  Disgust [label="Disgust: 0.039282672", fillcolor="#deffe1", fontcolor="black"];
108
  Fear [label="Fear: 0.014349542", fillcolor="#deffe1", fontcolor="black"];
109
  Joy [label="Joy: 0.048965044", fillcolor="#deffe1", fontcolor="black"];
110
+ Neutral [label="Neutral: 0.494852662", fillcolor="#deffe1", fontcolor="black"];
111
  Sadness [label="Sadness: 0.021111647", fillcolor="#deffe1", fontcolor="black"];
112
  Surprise [label="Surprise: 0.237405464", fillcolor="#deffe1", fontcolor="black"];
113
 
 
117
  // Establish the tree structure
118
  Input -> Output;
119
  Input -> Sentiment;
120
+ Sentiment -> Emotion
121
+ Emotion -> Anger;
122
+ Emotion -> Disgust;
123
+ Emotion -> Fear;
124
+ Emotion -> Joy;
125
+ Emotion -> Neutral;
126
+ Emotion -> Sadness;
127
+ Emotion -> Surprise;
128
  }
129
  """
130
  st.graphviz_chart(graph)
 
149
  # 🚀 Contributors Section
150
  with col1:
151
  st.markdown("### 🚀 Contributors")
152
+ st.write("##### **Archisman Karmakar**")
153
  st.write("[🔗 LinkedIn](https://www.linkedin.com/in/archismankarmakar/) | [🐙 GitHub](https://www.github.com/ArchismanKarmakar) | [📊 Kaggle](https://www.kaggle.com/archismancoder)")
154
 
155
+ st.write("##### **Sumon Chatterjee**")
156
  st.write("[🔗 LinkedIn](https://www.linkedin.com/in/sumon-chatterjee-3b3b43227) | [🐙 GitHub](https://github.com/Sumon670) | [📊 Kaggle](https://www.kaggle.com/sumonchatterjee)")
157
 
158
  # 🎓 Mentors Section
159
  with col2:
160
  st.markdown("### 🎓 Mentors")
161
+ st.write("##### **Prof. Anupam Mondal**")
162
  st.write("[🔗 LinkedIn](https://www.linkedin.com/in/anupam-mondal-ph-d-8a7a1a39/) | [📚 Google Scholar](https://scholar.google.com/citations?user=ESRR9o4AAAAJ&hl=en) | [🌐 Website](https://sites.google.com/view/anupammondal/home)")
163
 
164
+ st.write("##### **Prof. Sainik Kumar Mahata**")
165
  st.write("[��� LinkedIn](https://www.linkedin.com/in/mahatasainikk) | [📚 Google Scholar](https://scholar.google.co.in/citations?user=OcJDM50AAAAJ&hl=en) | [🌐 Website](https://sites.google.com/view/sainik-kumar-mahata/home)")
166
 
167
  # 📌 Research Project Info Section
 
176
  def show_dashboard():
177
  # free_memory()
178
  st.title("Tachygraphy Micro-text Analysis & Normalization")
179
+ st.write(f"""Welcome to the Tachygraphy Micro-text Analysis & Normalization Project. This application is designed to analyze text data through three stages:""")
180
+ coltl1, coltl2 = st.columns(2)
181
+ with coltl1:
182
+ st.write("""
183
+ 1. Sentiment Polarity Analysis
184
+ 2. Emotion Mood-tag Analysis
185
+ 3. Text Transformation & Normalization
186
+ 4. Stacked all 3 stages with their best models
187
+ 5. Data Correction & Collection
188
+ """)
189
+ with coltl2:
190
+ st.write("""
191
+ - Training Source: [GitHub @ Tachygraphy Micro-text Analysis & Normalization](https://github.com/ArchismanKarmakar/Tachygraphy-Microtext-Analysis-And-Normalization)
192
+ - Kaggle Collections: [Kaggle @ Tachygraphy Micro-text Analysis & Normalization](https://www.kaggle.com/datasets/archismancoder/dataset-tachygraphy/data?select=Tachygraphy_MicroText-AIO-V3.xlsx)
193
+ - Hugging Face Org: [Hugging Face @ Tachygraphy Micro-text Analysis & Normalization](https://huggingface.co/Tachygraphy-Microtext-Normalization-IEMK25)
194
+ - Deployment Source: [GitHub](https://github.com/ArchismanKarmakar/Tachygraphy-Microtext-Analysis-And-Normalization-Deployment-Source-HuggingFace_Streamlit_JPX14032025)
195
+ - Streamlit Deployemnt: [Streamlit](https://tachygraphy-microtext.streamlit.app/)
196
+ - Hugging Face Space Deployment: [Hugging Face Space](https://huggingface.co/spaces/Tachygraphy-Microtext-Normalization-IEMK25/Tachygraphy-Microtext-Analysis-and-Normalization-ArchismanCoder)
197
+ """)
198
 
199
  create_footer()
200
 
 
202
 
203
  create_sample_example1()
204
 
205
+ create_sample_example2()
206
 
207
 
208
  def __main__():
data_collection_form/data_collector.py CHANGED
@@ -250,7 +250,7 @@ def show_data_collector():
250
  col1, col2 = st.columns(2)
251
  with col1:
252
  feedback = st.text_input(
253
- "Enter the correct expanded standard formal English text:",
254
  key="feedback_input"
255
  )
256
  with col2:
@@ -260,11 +260,11 @@ def show_data_collector():
260
  )
261
 
262
  st.warning(
263
- "The correct slider is for the probability of actual label and wrong slider is the probability predicted by any model which is wrong for that label.")
264
 
265
 
266
 
267
- st.write("#### Sentiment Polarity Feedback (Select values between 0 and 1)")
268
  SENTIMENT_POLARITY_LABELS = ["negative", "neutral", "positive"]
269
 
270
  model_names1 = list(MODEL_OPTIONS1.keys())
@@ -277,7 +277,7 @@ def show_data_collector():
277
  sentiment_cols = st.columns(len(SENTIMENT_POLARITY_LABELS))
278
  for idx, label in enumerate(SENTIMENT_POLARITY_LABELS):
279
  with sentiment_cols[idx]:
280
- st.write(f"**{label.capitalize()}**")
281
  # Create two subcolumns for "Correct" and "Wrong"
282
  subcol_correct, subcol_wrong = st.columns(2)
283
  with subcol_correct:
@@ -308,7 +308,7 @@ def show_data_collector():
308
  # ---------------------------
309
  # Emotion Feedback
310
  # ---------------------------
311
- st.write("#### Emotion Feedback (Select values between 0 and 1)")
312
  EMOTION_MOODTAG_LABELS = [
313
  "anger", "disgust", "fear", "joy", "neutral",
314
  "sadness", "surprise"
@@ -331,7 +331,7 @@ def show_data_collector():
331
  main_cols = st.columns(len(row_labels))
332
  for idx, label in enumerate(row_labels):
333
  with main_cols[idx]:
334
- st.write(f"**{label.capitalize()}**")
335
  # Create two subcolumns for correct and wrong values.
336
  subcol_correct, subcol_wrong = st.columns(2)
337
  with subcol_correct:
@@ -358,7 +358,7 @@ def show_data_collector():
358
 
359
 
360
  # Use form_submit_button instead of st.button inside a form
361
- submit_feedback = st.form_submit_button("Submit Feedback")
362
 
363
  if submit_feedback and feedback.strip() and feedback2.strip():
364
  # Prepare data to insert
@@ -370,7 +370,7 @@ def show_data_collector():
370
  "sentiment_feedback": sentiment_feedback,
371
  "emotion_feedback": emotion_feedback
372
  }
373
- st.error("Feedback submission is disabled in debug logging mode.")
374
  # try:
375
  # from supabase import create_client, Client
376
  # from dotenv import load_dotenv
 
250
  col1, col2 = st.columns(2)
251
  with col1:
252
  feedback = st.text_input(
253
+ "Enter the correct / actual expanded standard formal English text:",
254
  key="feedback_input"
255
  )
256
  with col2:
 
260
  )
261
 
262
  st.warning(
263
+ "The correct slider is for the actual probability of the label and wrong slider is the predicted probability by any model which is wrong for that label.")
264
 
265
 
266
 
267
+ st.write("#### Sentiment Polarity Probabilities (Select values between 0 and 1)")
268
  SENTIMENT_POLARITY_LABELS = ["negative", "neutral", "positive"]
269
 
270
  model_names1 = list(MODEL_OPTIONS1.keys())
 
277
  sentiment_cols = st.columns(len(SENTIMENT_POLARITY_LABELS))
278
  for idx, label in enumerate(SENTIMENT_POLARITY_LABELS):
279
  with sentiment_cols[idx]:
280
+ st.write(f"##### **{label.capitalize()}**")
281
  # Create two subcolumns for "Correct" and "Wrong"
282
  subcol_correct, subcol_wrong = st.columns(2)
283
  with subcol_correct:
 
308
  # ---------------------------
309
  # Emotion Feedback
310
  # ---------------------------
311
+ st.write("#### Emotion Probabilities (Select values between 0 and 1)")
312
  EMOTION_MOODTAG_LABELS = [
313
  "anger", "disgust", "fear", "joy", "neutral",
314
  "sadness", "surprise"
 
331
  main_cols = st.columns(len(row_labels))
332
  for idx, label in enumerate(row_labels):
333
  with main_cols[idx]:
334
+ st.write(f"##### **{label.capitalize()}**")
335
  # Create two subcolumns for correct and wrong values.
336
  subcol_correct, subcol_wrong = st.columns(2)
337
  with subcol_correct:
 
358
 
359
 
360
  # Use form_submit_button instead of st.button inside a form
361
+ submit_feedback = st.form_submit_button("Submit Data")
362
 
363
  if submit_feedback and feedback.strip() and feedback2.strip():
364
  # Prepare data to insert
 
370
  "sentiment_feedback": sentiment_feedback,
371
  "emotion_feedback": emotion_feedback
372
  }
373
+ st.error("Submission is disabled in debug logging mode.")
374
  # try:
375
  # from supabase import create_client, Client
376
  # from dotenv import load_dotenv
imports.py CHANGED
@@ -4,7 +4,9 @@ import sys
4
  sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), )))
5
 
6
  import streamlit as st
7
- from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModel, DebertaV2Tokenizer, DebertaV2ForSequenceClassification
 
 
8
  # import torch
9
  import numpy as np
10
  import matplotlib.pyplot as plt
 
4
  sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), )))
5
 
6
  import streamlit as st
7
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModel, AutoModelForSeq2SeqLM, DebertaV2Tokenizer, DebertaV2ForSequenceClassification, DebertaV2Model
8
+ from transformers import pipeline
9
+
10
  # import torch
11
  import numpy as np
12
  import matplotlib.pyplot as plt
pyproject.toml CHANGED
@@ -1,6 +1,6 @@
1
  [project]
2
  name = "tachygraphy-microtext-analysis-and-normalization"
3
- version = "2025.03.25.post1"
4
  description = ""
5
  authors = [
6
  { name = "Archisman Karmakar", email = "[email protected]" },
 
1
  [project]
2
  name = "tachygraphy-microtext-analysis-and-normalization"
3
+ version = "2025.03.26.post1"
4
  description = ""
5
  authors = [
6
  { name = "Archisman Karmakar", email = "[email protected]" },
pyprojectOLD.toml CHANGED
@@ -1,6 +1,7 @@
1
  [project]
2
  name = "tachygraphy-microtext-analysis-and-normalization"
3
- version = "2025.03.24.post1"
 
4
  # version = "2025.03.22.post1"
5
  # version = "2025.03.21.post1"
6
  # version = "2025.03.18.post5"
 
1
  [project]
2
  name = "tachygraphy-microtext-analysis-and-normalization"
3
+ version = "2025.03.25.post1"
4
+ # version = "2025.03.24.post1"
5
  # version = "2025.03.22.post1"
6
  # version = "2025.03.21.post1"
7
  # version = "2025.03.18.post5"
stacked_stacking_stages/stacking_stages.py CHANGED
@@ -347,9 +347,9 @@ def get_sentiment_emotion_graph_code(input_text, normalized_text, sentiment_arra
347
  penwidth_map[label] = 5
348
  else:
349
  # For three distinct probabilities, assign 1 to the smallest, 3 to the middle, 5 to the largest.
350
- penwidth_map[sentiment_sorted[0][0]] = 1
351
- penwidth_map[sentiment_sorted[1][0]] = 3
352
- penwidth_map[sentiment_sorted[2][0]] = 5
353
 
354
  # Build the basic Graphviz structure
355
  graph_code = f'''
@@ -358,9 +358,9 @@ def get_sentiment_emotion_graph_code(input_text, normalized_text, sentiment_arra
358
  node [shape=box, style="rounded,filled", fontname="Helvetica", fontsize=12];
359
 
360
  Input [label="Input Text:\\n{input_text.replace('"', '\\"')}", fillcolor="#ffe6de", fontcolor="#000000"];
361
- Normalized [label="Normalized Text:\\n{normalized_text.replace('"', '\\"')}", fillcolor="#ffe6de", fontcolor="#000000"];
362
- Sentiment [label="Sentiment"];
363
- Emotion [label="Emotion"];
364
 
365
  Input -> Normalized;
366
  Input -> Sentiment;
@@ -370,7 +370,7 @@ def get_sentiment_emotion_graph_code(input_text, normalized_text, sentiment_arra
370
  # Add sentiment nodes (displaying full values without truncation)
371
  for label, prob in sentiment_pairs:
372
  node_id = f"S_{label}"
373
- graph_code += f'\n {node_id} [label="{label}: {prob}", fillcolor="#ecdeff", fontcolor="black"];'
374
  graph_code += f'\n Sentiment -> {node_id};'
375
 
376
  # Add emotion nodes (displaying full values)
@@ -378,7 +378,7 @@ def get_sentiment_emotion_graph_code(input_text, normalized_text, sentiment_arra
378
  if i < len(emotion_flat):
379
  prob = emotion_flat[i]
380
  node_id = f"E_{label}"
381
- graph_code += f'\n {node_id} [label="{label}: {prob}", fillcolor="#deffe1", fontcolor="black"];'
382
  graph_code += f'\n Emotion -> {node_id};'
383
 
384
  # Add arrows from each sentiment node to the Emotion node with fixed penwidth based on ranking
@@ -605,7 +605,7 @@ def show_stacking_stages():
605
 
606
  # Text input with change detection
607
  user_input = st.text_input(
608
- "Enter text for emotions mood-tag analysis:", key="user_input_stage3", on_change=on_text_change
609
  )
610
 
611
  if st.session_state.get("last_processed_input", "") != user_input:
 
347
  penwidth_map[label] = 5
348
  else:
349
  # For three distinct probabilities, assign 1 to the smallest, 3 to the middle, 5 to the largest.
350
+ penwidth_map[sentiment_sorted[0][0]] = 0.2
351
+ penwidth_map[sentiment_sorted[1][0]] = 0.3
352
+ penwidth_map[sentiment_sorted[2][0]] = 1
353
 
354
  # Build the basic Graphviz structure
355
  graph_code = f'''
 
358
  node [shape=box, style="rounded,filled", fontname="Helvetica", fontsize=12];
359
 
360
  Input [label="Input Text:\\n{input_text.replace('"', '\\"')}", fillcolor="#ffe6de", fontcolor="#000000"];
361
+ Normalized [label="Normalized Text:\\n{normalized_text.replace('"', '\\"')}", fillcolor="#f8ffde", fontcolor="#000000"];
362
+ Sentiment [label="Sentiment", fillcolor="#ffefde", fontcolor="black"];
363
+ Emotion [label="Emotion", fillcolor="#ffefde", fontcolor="black"];
364
 
365
  Input -> Normalized;
366
  Input -> Sentiment;
 
370
  # Add sentiment nodes (displaying full values without truncation)
371
  for label, prob in sentiment_pairs:
372
  node_id = f"S_{label}"
373
+ graph_code += f'\n {node_id} [label="{label}: {prob}", fillcolor="#f6edfc", fontcolor="black"];'
374
  graph_code += f'\n Sentiment -> {node_id};'
375
 
376
  # Add emotion nodes (displaying full values)
 
378
  if i < len(emotion_flat):
379
  prob = emotion_flat[i]
380
  node_id = f"E_{label}"
381
+ graph_code += f'\n {node_id} [label="{label}: {prob}", fillcolor="#edfcef", fontcolor="black"];'
382
  graph_code += f'\n Emotion -> {node_id};'
383
 
384
  # Add arrows from each sentiment node to the Emotion node with fixed penwidth based on ranking
 
605
 
606
  # Text input with change detection
607
  user_input = st.text_input(
608
+ "Enter text for all in one inference:", key="user_input_stage3", on_change=on_text_change
609
  )
610
 
611
  if st.session_state.get("last_processed_input", "") != user_input:
transformation_and_Normalization/transformationNormalization_main.py CHANGED
@@ -351,7 +351,7 @@ def transform_and_normalize():
351
 
352
  # Text input with change detection
353
  user_input = st.text_input(
354
- "Enter text for emotions mood-tag analysis:", key="user_input_stage3", on_change=on_text_change
355
  )
356
 
357
  if st.session_state.get("last_processed_input", "") != user_input:
 
351
 
352
  # Text input with change detection
353
  user_input = st.text_input(
354
+ "Enter text for normalization:", key="user_input_stage3", on_change=on_text_change
355
  )
356
 
357
  if st.session_state.get("last_processed_input", "") != user_input: