|
import streamlit as st
|
|
from transformers.utils.hub import TRANSFORMERS_CACHE
|
|
import shutil
|
|
import torch
|
|
import psutil
|
|
import gc
|
|
import os
|
|
|
|
def free_memory():
|
|
|
|
global current_model, current_tokenizer
|
|
|
|
if current_model is not None:
|
|
del current_model
|
|
current_model = None
|
|
|
|
if current_tokenizer is not None:
|
|
del current_tokenizer
|
|
current_tokenizer = None
|
|
|
|
gc.collect()
|
|
|
|
if torch.cuda.is_available():
|
|
torch.cuda.empty_cache()
|
|
torch.cuda.ipc_collect()
|
|
|
|
|
|
try:
|
|
if torch.cuda.is_available() is False:
|
|
psutil.virtual_memory()
|
|
except Exception as e:
|
|
print(f"Memory cleanup error: {e}")
|
|
|
|
|
|
try:
|
|
cache_dir = TRANSFORMERS_CACHE
|
|
if os.path.exists(cache_dir):
|
|
shutil.rmtree(cache_dir)
|
|
print("Cache cleared!")
|
|
except Exception as e:
|
|
print(f"❌ Cache cleanup error: {e}")
|
|
|
|
def show_dashboard():
|
|
|
|
st.title("Tachygraphy Micro-text Analysis & Normalization")
|
|
st.write("""
|
|
Welcome to the Tachygraphy Micro-text Analysis & Normalization Project. This application is designed to analyze text data through three stages:
|
|
1. Sentiment Polarity Analysis
|
|
2. Emotion Mood-tag Analysis
|
|
3. Text Transformation & Normalization
|
|
""")
|
|
|
|
|
|
def __main__():
|
|
show_dashboard() |