Archisman Karmakar
2025.03.25.post1
19dcfe5
raw
history blame
9.43 kB
import gc
import psutil
import torch
import shutil
from transformers.utils.hub import TRANSFORMERS_CACHE
import streamlit as st
import os
import sys
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), )))
def free_memory():
# """Free up CPU & GPU memory before loading a new model."""
# global current_model, current_tokenizer
# if current_model is not None:
# del current_model # Delete the existing model
# current_model = None # Reset reference
# if current_tokenizer is not None:
# del current_tokenizer # Delete the tokenizer
# current_tokenizer = None
gc.collect() # Force garbage collection for CPU memory
if torch.cuda.is_available():
torch.cuda.empty_cache() # Free GPU memory
torch.cuda.ipc_collect() # Clean up PyTorch GPU cache
# If running on CPU, reclaim memory using OS-level commands
try:
if torch.cuda.is_available() is False:
psutil.virtual_memory() # Refresh memory stats
except Exception as e:
print(f"Memory cleanup error: {e}")
# Delete cached Hugging Face models
try:
cache_dir = TRANSFORMERS_CACHE
if os.path.exists(cache_dir):
shutil.rmtree(cache_dir)
print("Cache cleared!")
except Exception as e:
print(f"❌ Cache cleanup error: {e}")
def create_sample_example1():
st.write("""
## Sample Example 1
""")
graph = """
digraph {
// Global graph settings with explicit DPI
graph [bgcolor="white", rankdir=TB, splines=true, nodesep=0.8, ranksep=0.8];
node [shape=box, style="rounded,filled", fontname="Helvetica", fontsize=9, margin="0.15,0.1"];
// Define nodes with custom colors
Input [label="Input:\nbruh, floods in Kerala, rescue ops non-stop 🚁", fillcolor="#ffe6de", fontcolor="#000000"];
Output [label="Output:\nBrother, the floods in Kerala are severe,\nand rescue operations are ongoing continuously.", fillcolor="#ffe6de", fontcolor="#000000"];
Sentiment [label="Sentiment:\nNEUTRAL", fillcolor="#ecdeff", fontcolor="black"];
// Emotion nodes with a uniform style
Anger [label="Anger: 0.080178231", fillcolor="#deffe1", fontcolor="black"];
Disgust [label="Disgust: 0.015257259", fillcolor="#deffe1", fontcolor="black"];
Fear [label="Fear: 0.601871967", fillcolor="#deffe1", fontcolor="black"];
Joy [label="Joy: 0.00410547", fillcolor="#deffe1", fontcolor="black"];
NeutralE [label="Neutral: 0.0341026", fillcolor="#deffe1", fontcolor="black"];
Sadness [label="Sadness: 0.245294735", fillcolor="#deffe1", fontcolor="black"];
Surprise [label="Surprise: 0.019189769", fillcolor="#deffe1", fontcolor="black"];
// Define edges with a consistent style
edge [color="#7a7a7a", penwidth=3];
// Establish the tree structure
Input -> Output;
Input -> Sentiment;
Sentiment -> Anger;
Sentiment -> Disgust;
Sentiment -> Fear;
Sentiment -> Joy;
Sentiment -> NeutralE;
Sentiment -> Sadness;
Sentiment -> Surprise;
}
"""
st.graphviz_chart(graph)
def create_sample_example2():
st.write("""
## Sample Example 2
""")
graph = """
digraph {
// Global graph settings
graph [bgcolor="white", rankdir=TB, splines=true, nodesep=0.8, ranksep=0.8];
node [shape=box, style="rounded,filled", fontname="Helvetica", fontsize=9, margin="0.15,0.1"];
// Define nodes with custom colors
Input [label="Input:\nu rlly think all that talk means u tough? lol, when I step up, u ain't gon say sh*t", fillcolor="#ffe6de", fontcolor="black"];
Output [label="Output:\nyou really think all that talk makes you tough lol when i step up you are not going to say anything", fillcolor="#ffe6de", fontcolor="black"];
Sentiment [label="Sentiment:\nNEGATIVE", fillcolor="#ecdeff", fontcolor="black"];
// Emotion nodes with a uniform style
Anger [label="Anger: 0.14403291", fillcolor="#deffe1", fontcolor="black"];
Disgust [label="Disgust: 0.039282672", fillcolor="#deffe1", fontcolor="black"];
Fear [label="Fear: 0.014349542", fillcolor="#deffe1", fontcolor="black"];
Joy [label="Joy: 0.048965044", fillcolor="#deffe1", fontcolor="black"];
NeutralE [label="Neutral: 0.494852662", fillcolor="#deffe1", fontcolor="black"];
Sadness [label="Sadness: 0.021111647", fillcolor="#deffe1", fontcolor="black"];
Surprise [label="Surprise: 0.237405464", fillcolor="#deffe1", fontcolor="black"];
// Define edges with a consistent style
edge [color="#7a7a7a", penwidth=3];
// Establish the tree structure
Input -> Output;
Input -> Sentiment;
Sentiment -> Anger;
Sentiment -> Disgust;
Sentiment -> Fear;
Sentiment -> Joy;
Sentiment -> NeutralE;
Sentiment -> Sadness;
Sentiment -> Surprise;
}
"""
st.graphviz_chart(graph)
def create_project_overview():
# st.divider()
st.markdown("## Project Overview")
st.write(f"""
Tachygraphyβ€”originally developed to expedite writingβ€”has evolved over centuries. In the 1990s, it reappeared as micro-text, driving faster communication on social media with characteristics like 'Anytime, Anyplace, Anybody, and Anything (4A)'. This project focuses on the analysis and normalization of micro-text, which is a prevalent form of informal communication today. It aims to enhance Natural Language Processing (NLP) tasks by standardizing micro-text for better sentiment analysis, emotion analysis, data extraction and normalization to understandable form aka. 4A message decoding as primary objective.
"""
)
def create_footer():
# st.divider()
st.markdown("## About Us")
# πŸ› οΈ Layout using Streamlit columns
col1, col2, col3 = st.columns([1, 1, 1])
# πŸš€ Contributors Section
with col1:
st.markdown("### πŸš€ Contributors")
st.write("**Archisman Karmakar**")
st.write("[πŸ”— LinkedIn](https://www.linkedin.com/in/archismankarmakar/) | [πŸ™ GitHub](https://www.github.com/ArchismanKarmakar) | [πŸ“Š Kaggle](https://www.kaggle.com/archismancoder)")
st.write("**Sumon Chatterjee**")
st.write("[πŸ”— LinkedIn](https://www.linkedin.com/in/sumon-chatterjee-3b3b43227) | [πŸ™ GitHub](https://github.com/Sumon670) | [πŸ“Š Kaggle](https://www.kaggle.com/sumonchatterjee)")
# πŸŽ“ Mentors Section
with col2:
st.markdown("### πŸŽ“ Mentors")
st.write("**Prof. Anupam Mondal**")
st.write("[πŸ”— LinkedIn](https://www.linkedin.com/in/anupam-mondal-ph-d-8a7a1a39/) | [πŸ“š Google Scholar](https://scholar.google.com/citations?user=ESRR9o4AAAAJ&hl=en) | [🌐 Website](https://sites.google.com/view/anupammondal/home)")
st.write("**Prof. Sainik Kumar Mahata**")
st.write("[πŸ”— LinkedIn](https://www.linkedin.com/in/mahatasainikk) | [πŸ“š Google Scholar](https://scholar.google.co.in/citations?user=OcJDM50AAAAJ&hl=en) | [🌐 Website](https://sites.google.com/view/sainik-kumar-mahata/home)")
# πŸ“Œ Research Project Info Section
with col3:
st.markdown("### πŸ“ About the Project")
st.write("This is our research project for our **B.Tech final year** and a **journal** which is yet to be published.")
st.write("Built with πŸ’™ using **Streamlit**.")
# πŸš€ Display Footer
def show_dashboard():
# free_memory()
st.title("Tachygraphy Micro-text Analysis & Normalization")
st.write("""
Welcome to the Tachygraphy Micro-text Analysis & Normalization Project. This application is designed to analyze text data through three stages:
1. Sentiment Polarity Analysis
2. Emotion Mood-tag Analysis
3. Text Transformation & Normalization
""")
st.write("""
- Training Source: [GitHub @ Tachygraphy Micro-text Analysis & Normalization](https://github.com/ArchismanKarmakar/Tachygraphy-Microtext-Analysis-And-Normalization)
- Kaggle Collections: [Kaggle @ Tachygraphy Micro-text Analysis & Normalization](https://www.kaggle.com/datasets/archismancoder/dataset-tachygraphy/data?select=Tachygraphy_MicroText-AIO-V3.xlsx)
- Hugging Face Org: [Hugging Face @ Tachygraphy Micro-text Analysis & Normalization](https://huggingface.co/Tachygraphy-Microtext-Normalization-IEMK25)
- Deployment Source: [GitHub](https://github.com/ArchismanKarmakar/Tachygraphy-Microtext-Analysis-And-Normalization-Deployment-Source-HuggingFace_Streamlit_JPX14032025)
- Streamlit Deployemnt: [Streamlit](https://tachygraphy-microtext.streamlit.app/)
- Hugging Face Space Deployment: [Hugging Face Space](https://huggingface.co/spaces/Tachygraphy-Microtext-Normalization-IEMK25/Tachygraphy-Microtext-Analysis-and-Normalization-ArchismanCoder)
""")
create_footer()
create_project_overview()
create_sample_example1()
# create_sample_example2()
def __main__():
show_dashboard()