File size: 7,705 Bytes
2c0d348
 
 
 
b214153
2c0d348
4a97943
2c0d348
4a97943
f31213f
4a97943
2c0d348
 
 
f31213f
b214153
 
 
 
 
 
f31213f
 
 
 
 
 
 
 
 
4a97943
f31213f
4a97943
 
 
 
f31213f
b214153
 
 
 
 
2c0d348
f31213f
2c0d348
 
 
 
f31213f
 
2c0d348
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a97943
 
 
2c0d348
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a97943
2c0d348
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a97943
 
2c0d348
bd1e740
4a97943
2c0d348
4a97943
2c0d348
ae13ab7
4a97943
2c0d348
4a97943
2c0d348
ae13ab7
4a97943
 
2c0d348
4a97943
2c0d348
ae13ab7
4a97943
 
 
2c0d348
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a97943
 
 
2c0d348
4a97943
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c0d348
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
from streamlit_extras.bottom_container import bottom
from streamlit_extras.app_logo import add_logo
from streamlit_extras.add_vertical_space import add_vertical_space
from streamlit_extras.stylable_container import stylable_container

from imports import *
import streamlit as st
from streamlit_option_menu import option_menu
import os
import asyncio
import sys
import shutil
import gc
from transformers.utils.hub import TRANSFORMERS_CACHE


try:
    asyncio.get_running_loop()
except RuntimeError:
    asyncio.run(asyncio.sleep(0))

if sys.platform == "win32":
    asyncio.set_event_loop_policy(asyncio.WindowsSelectorEventLoopPolicy())
else:
    try:
        asyncio.get_running_loop()
    except RuntimeError:
        asyncio.set_event_loop(asyncio.new_event_loop())


import joblib
import importlib
import importlib.util

sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), )))


from emotion_analysis import show_emotion_analysis
from sentiment_analysis.sentiment_analysis_main import show_sentiment_analysis
from dashboard import show_dashboard


# from text_transformation import show_text_transformation

st.set_page_config(
    page_title="Tachygraphy Microtext Analysis & Normalization",
    # layout="wide"
)


def free_memory():
    #  """Free up CPU & GPU memory before loading a new model."""
    global current_model, current_tokenizer

    if current_model is not None:
        del current_model  # Delete the existing model
        current_model = None  # Reset reference

    if current_tokenizer is not None:
        del current_tokenizer  # Delete the tokenizer
        current_tokenizer = None

    gc.collect()  # Force garbage collection for CPU memory

    if torch.cuda.is_available():
        torch.cuda.empty_cache()  # Free GPU memory
        torch.cuda.ipc_collect()  # Clean up PyTorch GPU cache

    # If running on CPU, reclaim memory using OS-level commands
    try:
        if torch.cuda.is_available() is False:
            psutil.virtual_memory()  # Refresh memory stats
    except Exception as e:
        print(f"Memory cleanup error: {e}")

    # Delete cached Hugging Face models
    try:
        cache_dir = TRANSFORMERS_CACHE
        if os.path.exists(cache_dir):
            shutil.rmtree(cache_dir)
            print("Cache cleared!")
    except Exception as e:
        print(f"❌ Cache cleanup error: {e}")



def main():
    # selection = option_menu(
    #     menu_title="Navigation",
    #     options=[
    #         "Dashboard",
    #         "Stage 1: Sentiment Polarity Analysis",
    #         "Stage 2: Emotion Mood-tag Analysis",
    #         "Stage 3: Text Transformation & Normalization"
    #     ],
    #     icons=["joystick", "bar-chart", "emoji-laughing", "pencil"],
    #     styles={
    #         "container": {}},
    #     menu_icon="menu-button-wide-fill",
    #     default_index=0,
    #     orientation="horizontal"
    # )

    st.sidebar.title("Navigation")
    with st.sidebar:
        selection = option_menu(
            menu_title=None,          # No title for a sleek look
            options=["Dashboard", "Stage 1: Sentiment Polarity Analysis", "Stage 2: Emotion Mood-tag Analysis", "Stage 3: Text Transformation & Normalization"],
            icons=None,
            menu_icon="cast",          # Main menu icon
            default_index=0,           # Highlight the first option
            orientation="vertical",
            styles={
                "container": {"padding": "0!important", "background-color": "#f8f9fa"},
                "icon": {"color": "#6c757d", "font-size": "18px"},
                "nav-link": {
                    "font-size": "16px",
                    "text-align": "center",
                    "margin": "0px",
                    "color": "#6c757d",
                    "transition": "0.3s",
                },
                "nav-link-selected": {
                    "background-color": "#FF4B4B",
                    "color": "white",
                    "font-weight": "bold",
                    "border-radius": "8px",
                },
            }
        )

    # st.sidebar.title("Navigation")
    # selection = st.sidebar.radio("Go to", ["Dashboard", "Stage 1: Sentiment Polarity Analysis", "Stage 2: Emotion Mood-tag Analysis", "Stage 3: Text Transformation & Normalization"])

    # if selection == "Dashboard":
    #     show_dashboard()
    # elif selection == "Stage 1: Sentiment Polarity Analysis":
    #     show_sentiment_analysis()
    # elif selection == "Stage 2: Emotion Mood-tag Analysis":
    #     # show_emotion_analysis()
    #     st.write("This section is under development.")
    # elif selection == "Stage 3: Text Transformation & Normalization":
    #     # show_text_transformation()
    #     st.write("This section is under development.")

    if selection == "Dashboard":
        st.cache_resource.clear()
        # free_memory()
        show_dashboard()

    elif selection == "Stage 1: Sentiment Polarity Analysis":
        st.cache_resource.clear()
        # free_memory()
        show_sentiment_analysis()

    elif selection == "Stage 2: Emotion Mood-tag Analysis":
        st.cache_resource.clear()
        # free_memory()
        # show_emotion_analysis()
        st.write("This section is under development.")

    elif selection == "Stage 3: Text Transformation & Normalization":
        st.cache_resource.clear()
        # free_memory()
        # show_text_transformation()
        st.write("This section is under development.")



    # st.sidebar.title("Navigation")
    # selection = st.sidebar.radio("Go to", ["Dashboard", "Stage 1: Sentiment Polarity Analysis", "Stage 2: Emotion Mood-tag Analysis", "Stage 3: Text Transformation & Normalization"])

    # if selection == "Dashboard":
    #     show_dashboard()
    # elif selection == "Stage 1: Sentiment Polarity Analysis":
    #     show_sentiment_analysis()
    # elif selection == "Stage 2: Emotion Mood-tag Analysis":
    #     # show_emotion_analysis()
    #     st.write("This section is under development.")
    # elif selection == "Stage 3: Text Transformation & Normalization":
    #     # show_text_transformation()
    #     st.write("This section is under development.")

    st.sidebar.title("About")
    st.sidebar.info("""

        **Contributors:**

        - Archisman Karmakar

            - [LinkedIn](https://www.linkedin.com/in/archismankarmakar/)

            - [GitHub](https://www.github.com/ArchismanKarmakar)

            - [Kaggle](https://www.kaggle.com/archismancoder)

        - Sumon Chatterjee

            - [LinkedIn](https://www.linkedin.com/in/sumon-chatterjee-3b3b43227)

            - [GitHub](https://github.com/Sumon670)

            - [Kaggle](https://www.kaggle.com/sumonchatterjee)



        **Mentors:**

        - Prof. Anupam Mondal

            - [LinkedIn](https://www.linkedin.com/in/anupam-mondal-ph-d-8a7a1a39/)

            - [Google Scholar](https://scholar.google.com/citations?user=ESRR9o4AAAAJ&hl=en)

            - [Website](https://sites.google.com/view/anupammondal/home)

        - Prof. Sainik Kumar Mahata

            - [LinkedIn](https://www.linkedin.com/in/mahatasainikk)

            - [Google Scholar](https://scholar.google.co.in/citations?user=OcJDM50AAAAJ&hl=en)

            - [Website](https://sites.google.com/view/sainik-kumar-mahata/home)



        This is our research project for our B.Tech final year and a journal which is yet to be published.

    """)

if __name__ == "__main__":
    main()