File size: 10,712 Bytes
4a97943 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
from imports import *
import importlib.util
import os
import sys
import joblib
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), )))
# from hmv_cfg_base_stage1.model1 import load_model as load_model1
# from hmv_cfg_base_stage1.model1 import predict as predict1
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
CONFIG_STAGE1 = os.path.join(BASE_DIR, "config", "stage1_models.json")
LOADERS_STAGE1 = os.path.join(BASE_DIR, "hmv-cfg-base-stage1")
# Load the model and tokenizer
# model_name = "tachygraphy-microtrext-norm-org/DeBERTa-v3-seqClassfication-LV1-SentimentPolarities-Batch8"
# tokenizer = AutoTokenizer.from_pretrained(model_name)
# model = AutoModel.from_pretrained(model_name)
SENTIMENT_POLARITY_LABELS = [
"negative", "neutral", "positive"
]
current_model = None
current_tokenizer = None
# Enabling Resource caching
@st.cache_resource
def load_model_config():
with open(CONFIG_STAGE1, "r") as f:
model_data = json.load(f)
model_options = {v["name"]: v for v in model_data.values()} # Extract names for dropdown
return model_data, model_options
MODEL_DATA, MODEL_OPTIONS = load_model_config()
# def load_model():
# model = DebertaV2ForSequenceClassification.from_pretrained(model_name)
# tokenizer = DebertaV2Tokenizer.from_pretrained(model_name)
# return model, tokenizer
# β
Dynamically Import Model Functions
def import_from_module(module_name, function_name):
try:
module = importlib.import_module(module_name)
return getattr(module, function_name)
except (ModuleNotFoundError, AttributeError) as e:
st.error(f"β Import Error: {e}")
return None
def free_memory():
# """Free up CPU & GPU memory before loading a new model."""
global current_model, current_tokenizer
if current_model is not None:
del current_model # Delete the existing model
current_model = None # Reset reference
if current_tokenizer is not None:
del current_tokenizer # Delete the tokenizer
current_tokenizer = None
gc.collect() # Force garbage collection for CPU memory
if torch.cuda.is_available():
torch.cuda.empty_cache() # Free GPU memory
torch.cuda.ipc_collect() # Clean up PyTorch GPU cache
# If running on CPU, reclaim memory using OS-level commands
try:
if torch.cuda.is_available() is False:
psutil.virtual_memory() # Refresh memory stats
except Exception as e:
print(f"Memory cleanup error: {e}")
def load_selected_model(model_name):
global current_model, current_tokenizer
free_memory()
# st.write("DEBUG: Available Models:", MODEL_OPTIONS.keys()) # β
See available models
# st.write("DEBUG: Selected Model:", MODEL_OPTIONS[model_name]) # β
Check selected model
# st.write("DEBUG: Model Name:", model_name) # β
Check selected model
if model_name not in MODEL_OPTIONS:
st.error(f"β οΈ Model '{model_name}' not found in config!")
return None, None, None
model_info = MODEL_OPTIONS[model_name]
hf_location = model_info["hf_location"]
model_module = model_info["module_path"]
load_function = model_info["load_function"]
predict_function = model_info["predict_function"]
load_model_func = import_from_module(model_module, load_function)
predict_func = import_from_module(model_module, predict_function)
if load_model_func is None or predict_func is None:
st.error("β Model functions could not be loaded!")
return None, None, None
model, tokenizer = load_model_func()
current_model, current_tokenizer = model, tokenizer
return model, tokenizer, predict_func
# def load_selected_model(model_name):
# # """Load model and tokenizer based on user selection."""
# global current_model, current_tokenizer
# # Free memory before loading a new model
# free_memory()
# if model_name not in MODEL_OPTIONS:
# st.error(f"β οΈ Model '{model_name}' not found in config!")
# return None, None
# model_info = MODEL_OPTIONS[model_name]
# hf_location = model_info["hf_location"]
# model_module = model_info["module_path"]
# # load_function = "load_model"
# # predict_function = "predict"
# load_function = model_info["load_function"]
# predict_function = model_info["predict_function"]
# # tokenizer_class = globals()[model_info["tokenizer_class"]]
# # model_class = globals()[model_info["model_class"]]
# # tokenizer = tokenizer_class.from_pretrained(hf_location)
# load_model_func = import_from_module(model_module, load_function)
# predict_func = import_from_module(model_module, predict_function)
# # # Load model
# # if model_info["type"] == "custom_checkpoint" or model_info["type"] == "custom_model":
# # model = torch.load(hf_location, map_location="cpu") # Load PyTorch model
# # elif model_info["type"] == "hf_automodel_finetuned_dbt3":
# # tokenizer_class = globals()[model_info["tokenizer_class"]]
# # model_class = globals()[model_info["model_class"]]
# # tokenizer = tokenizer_class.from_pretrained(hf_location)
# # model = model_class.from_pretrained(hf_location,
# # problem_type=model_info["problem_type"],
# # num_labels=model_info["num_labels"]
# # )
# # else:
# # st.error("Invalid model selection")
# # return None, None
# if load_model_func is None or predict_func is None:
# st.error("β Model functions could not be loaded!")
# return None, None
# # current_model, current_tokenizer = model, tokenizer # Store references
# # return model, tokenizer
# model, tokenizer = load_model_func(hf_location)
# current_model, current_tokenizer = model, tokenizer
# return model, tokenizer, predict_func
def predict(text, model, tokenizer, device, max_len=128):
# Tokenize and pad the input text
inputs = tokenizer(
text,
add_special_tokens=True,
padding=True,
truncation=False,
return_tensors="pt",
return_token_type_ids=False,
).to(device) # Move input tensors to the correct device
with torch.no_grad():
outputs = model(**inputs)
# Apply sigmoid activation (for BCEWithLogitsLoss)
probabilities = outputs.logits.cpu().numpy()
return probabilities
# def show_sentiment_analysis():
# Add your sentiment analysis code here
# user_input = st.text_input("Enter text for sentiment analysis:")
# user_input = st.text_area("Enter text for sentiment analysis:", height=200)
# user_input = st.text_area("Enter text for sentiment analysis:", max_chars=500)
def show_sentiment_analysis():
st.title("Stage 1: Sentiment Polarity Analysis")
st.write("This section will handle sentiment analysis.")
if "selected_model" not in st.session_state:
st.session_state.selected_model = list(MODEL_OPTIONS.keys())[0] # Default selection
if "clear_output" not in st.session_state:
st.session_state.clear_output = False
st.selectbox("Choose a model:", list(MODEL_OPTIONS.keys()), key="selected_model")
selected_model = st.session_state.selected_model
if selected_model not in MODEL_OPTIONS:
st.error(f"β Selected model '{selected_model}' not found!")
st.stop()
st.session_state.clear_output = True # Reset output when model changes
# st.write("DEBUG: Available Models:", MODEL_OPTIONS.keys()) # β
See available models
# st.write("DEBUG: Selected Model:", MODEL_OPTIONS[selected_model]) # β
Check selected model
user_input = st.text_input("Enter text for sentiment analysis:")
if user_input:
# Make prediction
# model, tokenizer = load_model()
# model, tokenizer = load_selected_model(selected_model)
model, tokenizer, predict_func = load_selected_model(selected_model)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if model is None:
st.error("β οΈ Error: Model failed to load! Check model selection or configuration.")
st.stop()
model.to(device)
# predictions = predict(user_input, model, tokenizer, device)
predictions = predict_func(user_input, model, tokenizer, device)
# Squeeze predictions to remove extra dimensions
predictions_array = predictions.squeeze()
# Convert to binary predictions (argmax)
binary_predictions = np.zeros_like(predictions_array)
max_indices = np.argmax(predictions_array)
binary_predictions[max_indices] = 1
# Display raw predictions
st.write(f"**Predicted Sentiment Scores:** {predictions_array}")
# Display binary classification result
st.write(f"**Predicted Sentiment:**")
st.write(f"**NEGATIVE:** {binary_predictions[0]}, **NEUTRAL:** {binary_predictions[1]}, **POSITIVE:** {binary_predictions[2]}")
# st.write(f"**NEUTRAL:** {binary_predictions[1]}")
# st.write(f"**POSITIVE:** {binary_predictions[2]}")
# 1οΈβ£ **Polar Plot (Plotly)**
sentiment_polarities = predictions_array.tolist()
fig_polar = px.line_polar(
pd.DataFrame(dict(r=sentiment_polarities, theta=SENTIMENT_POLARITY_LABELS)),
r='r', theta='theta', line_close=True
)
st.plotly_chart(fig_polar)
# 2οΈβ£ **Normalized Horizontal Bar Chart (Matplotlib)**
normalized_predictions = predictions_array / predictions_array.sum()
fig, ax = plt.subplots(figsize=(8, 2))
left = 0
for i in range(len(normalized_predictions)):
ax.barh(0, normalized_predictions[i], color=plt.cm.tab10(i), left=left, label=SENTIMENT_POLARITY_LABELS[i])
left += normalized_predictions[i]
# Configure the chart
ax.set_xlim(0, 1)
ax.set_yticks([])
ax.set_xticks(np.arange(0, 1.1, 0.1))
ax.legend(loc='upper center', bbox_to_anchor=(0.5, -0.15), ncol=len(SENTIMENT_POLARITY_LABELS))
plt.title("Sentiment Polarity Prediction Distribution")
# Display in Streamlit
st.pyplot(fig)
if __name__ == "__main__":
show_sentiment_analysis() |