File size: 14,379 Bytes
297372e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6523d34
 
 
 
1a19f21
6523d34
 
 
297372e
 
6523d34
297372e
6523d34
 
 
 
297372e
 
1a19f21
6523d34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
297372e
6523d34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a19f21
6523d34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
297372e
 
6523d34
 
297372e
6523d34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
297372e
6523d34
 
 
 
 
297372e
 
 
6523d34
 
 
 
 
297372e
6523d34
 
 
 
 
 
 
 
8c156f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
# # import streamlit as st
# # import os
# # import re
# # import torch
# # from transformers import AutoModelForCausalLM, AutoTokenizer
# # from PyPDF2 import PdfReader
# # from peft import get_peft_model, LoraConfig, TaskType

# # # βœ… Force CPU execution for Streamlit Cloud
# # device = torch.device("cpu")

# # # πŸ”Ή Load IBM Granite Model (CPU-Compatible)
# # MODEL_NAME = "ibm-granite/granite-3.1-2b-instruct"

# # model = AutoModelForCausalLM.from_pretrained(
# #     MODEL_NAME,
# #     device_map="cpu",  # Force CPU execution
# #     torch_dtype=torch.float32  # Use float32 since Streamlit runs on CPU
# # )

# # tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)

# # # πŸ”Ή Apply LoRA Fine-Tuning Configuration
# # lora_config = LoraConfig(
# #     r=8,
# #     lora_alpha=32,
# #     target_modules=["q_proj", "v_proj"],
# #     lora_dropout=0.1,
# #     bias="none",
# #     task_type=TaskType.CAUSAL_LM
# # )
# # model = get_peft_model(model, lora_config)
# # model.eval()

# # # πŸ›  Function to Read & Extract Text from PDFs
# # def read_files(file):
# #     file_context = ""
# #     reader = PdfReader(file)
    
# #     for page in reader.pages:
# #         text = page.extract_text()
# #         if text:
# #             file_context += text + "\n"
    
# #     return file_context.strip()

# # # πŸ›  Function to Format AI Prompts
# # def format_prompt(system_msg, user_msg, file_context=""):
# #     if file_context:
# #         system_msg += f" The user has provided a contract document. Use its context to generate insights, but do not repeat or summarize the document itself."
# #     return [
# #         {"role": "system", "content": system_msg},
# #         {"role": "user", "content": user_msg}
# #     ]

# # # πŸ›  Function to Generate AI Responses
# # def generate_response(input_text, max_tokens=1000, top_p=0.9, temperature=0.7):
# #     model_inputs = tokenizer([input_text], return_tensors="pt").to(device)
    
# #     with torch.no_grad():
# #         output = model.generate(
# #             **model_inputs,
# #             max_new_tokens=max_tokens,
# #             do_sample=True,
# #             top_p=top_p,
# #             temperature=temperature,
# #             num_return_sequences=1,
# #             pad_token_id=tokenizer.eos_token_id
# #         )
    
# #     return tokenizer.decode(output[0], skip_special_tokens=True)

# # # πŸ›  Function to Clean AI Output
# # def post_process(text):
# #     cleaned = re.sub(r'ζˆ₯+', '', text)  # Remove unwanted symbols
# #     lines = cleaned.splitlines()
# #     unique_lines = list(dict.fromkeys([line.strip() for line in lines if line.strip()]))
# #     return "\n".join(unique_lines)

# # # πŸ›  Function to Handle RAG with IBM Granite & Streamlit
# # def granite_simple(prompt, file):
# #     file_context = read_files(file) if file else ""
    
# #     system_message = "You are IBM Granite, a legal AI assistant specializing in contract analysis."
    
# #     messages = format_prompt(system_message, prompt, file_context)
# #     input_text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    
# #     response = generate_response(input_text)
# #     return post_process(response)

# # # πŸ”Ή Streamlit UI
# # def main():
# #     st.set_page_config(page_title="Contract Analysis AI", page_icon="πŸ“œ", layout="wide")

# #     st.title("πŸ“œ AI-Powered Contract Analysis Tool")
# #     st.write("Upload a contract document (PDF) for a detailed AI-driven legal and technical analysis.")

# #     # πŸ”Ή Sidebar Settings
# #     with st.sidebar:
# #         st.header("βš™οΈ Settings")
# #         max_tokens = st.slider("Max Tokens", 50, 1000, 250, 50)
# #         top_p = st.slider("Top P (sampling)", 0.1, 1.0, 0.9, 0.1)
# #         temperature = st.slider("Temperature (creativity)", 0.1, 1.0, 0.7, 0.1)

# #     # πŸ”Ή File Upload Section
# #     uploaded_file = st.file_uploader("πŸ“‚ Upload a contract document (PDF)", type="pdf")

# #     if uploaded_file is not None:
# #         temp_file_path = "temp_uploaded_contract.pdf"
# #         with open(temp_file_path, "wb") as f:
# #             f.write(uploaded_file.getbuffer())

# #         st.success("βœ… File uploaded successfully!")

# #         # πŸ”Ή User Input for Analysis
# #         user_prompt = "Perform a detailed technical analysis of the attached contract document, highlighting potential risks, legal pitfalls, compliance issues, and areas where contractual terms may lead to future disputes or operational challenges."

# #         if st.button("πŸ” Analyze Document"):
# #             with st.spinner("Analyzing contract document... ⏳"):
# #                 final_answer = granite_simple(user_prompt, temp_file_path)

# #             # πŸ”Ή Display Analysis Result
# #             st.subheader("πŸ“‘ Analysis Result")
# #             st.write(final_answer)

# #             # πŸ”Ή Remove Temporary File
# #             os.remove(temp_file_path)

# # # πŸ”₯ Run Streamlit App
# # if __name__ == '__main__':
# #     main()





# import streamlit as st
# import os
# import re
# import torch
# from transformers import AutoModelForCausalLM, AutoTokenizer
# from PyPDF2 import PdfReader
# from peft import get_peft_model, LoraConfig, TaskType

# # βœ… Auto-detect GPU for Hugging Face Spaces
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# # πŸ”Ή Load IBM Granite Model (CPU/GPU Compatible)
# MODEL_NAME = "ibm-granite/granite-3.1-2b-instruct"

# model = AutoModelForCausalLM.from_pretrained(
#     MODEL_NAME,
#     device_map="auto",  # Auto-detect GPU if available
#     torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
# )

# tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)

# # πŸ”Ή Apply LoRA Fine-Tuning Configuration
# lora_config = LoraConfig(
#     r=8,
#     lora_alpha=32,
#     target_modules=["q_proj", "v_proj"],
#     lora_dropout=0.1,
#     bias="none",
#     task_type=TaskType.CAUSAL_LM
# )
# model = get_peft_model(model, lora_config)
# model.eval()

# # πŸ›  Function to Read & Extract Text from PDFs (No Temp File Needed)
# def read_files(file):
#     file_context = ""
#     reader = PdfReader(file)
    
#     for page in reader.pages:
#         text = page.extract_text()
#         if text:
#             file_context += text + "\n"
    
#     return file_context.strip()

# # πŸ›  Function to Format AI Prompts
# def format_prompt(system_msg, user_msg, file_context=""):
#     if file_context:
#         system_msg += f" The user has provided a contract document. Use its context to generate insights, but do not repeat or summarize the document itself."
#     return [
#         {"role": "system", "content": system_msg},
#         {"role": "user", "content": user_msg}
#     ]

# # πŸ›  Function to Generate AI Responses
# def generate_response(input_text, max_tokens=1000, top_p=0.9, temperature=0.7):
#     model_inputs = tokenizer([input_text], return_tensors="pt").to(device)
    
#     with torch.no_grad():
#         output = model.generate(
#             **model_inputs,
#             max_new_tokens=max_tokens,
#             do_sample=True,
#             top_p=top_p,
#             temperature=temperature,
#             num_return_sequences=1,
#             pad_token_id=tokenizer.eos_token_id
#         )
    
#     return tokenizer.decode(output[0], skip_special_tokens=True)

# # πŸ›  Function to Clean AI Output
# def post_process(text):
#     cleaned = re.sub(r'ζˆ₯+', '', text)  # Remove unwanted symbols
#     lines = cleaned.splitlines()
#     unique_lines = list(dict.fromkeys([line.strip() for line in lines if line.strip()]))
#     return "\n".join(unique_lines)

# # πŸ›  Function to Handle AI Analysis (No Temp File)
# def granite_simple(prompt, file_content):
#     system_message = "You are IBM Granite, a legal AI assistant specializing in contract analysis."
    
#     messages = format_prompt(system_message, prompt, file_content)
#     input_text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    
#     response = generate_response(input_text)
#     return post_process(response)

# # πŸ”Ή Streamlit UI
# def main():
#     st.set_page_config(page_title="Contract Analysis AI", page_icon="πŸ“œ", layout="wide")

#     st.title("πŸ“œ AI-Powered Contract Analysis Tool")
#     st.write("Upload a contract document (PDF) for a detailed AI-driven legal and technical analysis.")

#     # πŸ”Ή Sidebar Settings
#     with st.sidebar:
#         st.header("βš™οΈ Settings")
#         max_tokens = st.slider("Max Tokens", 50, 1000, 250, 50)
#         top_p = st.slider("Top P (sampling)", 0.1, 1.0, 0.9, 0.1)
#         temperature = st.slider("Temperature (creativity)", 0.1, 1.0, 0.7, 0.1)

#     # πŸ”Ή File Upload Section (No Temp File)
#     uploaded_file = st.file_uploader("πŸ“‚ Upload a contract document (PDF)", type="pdf")

#     if uploaded_file is not None:
#         st.success("βœ… File uploaded successfully!")

#         # πŸ”Ή Read PDF Content (No Temp File)
#         file_content = read_files(uploaded_file)

#         # πŸ”Ή User Input for Analysis
#         user_prompt = "Perform a detailed technical analysis of the attached contract document, highlighting potential risks, legal pitfalls, compliance issues, and areas where contractual terms may lead to future disputes or operational challenges."

#         if st.button("πŸ” Analyze Document"):
#             with st.spinner("Analyzing contract document... ⏳"):
#                 final_answer = granite_simple(user_prompt, file_content)

#             # πŸ”Ή Display Analysis Result
#             st.subheader("πŸ“‘ Analysis Result")
#             st.write(final_answer)

# # πŸ”₯ Run Streamlit App
# if __name__ == '__main__':
#     main()

import streamlit as st
import os
import re
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from PyPDF2 import PdfReader
from peft import get_peft_model, LoraConfig, TaskType

# βœ… Force CPU execution for Hugging Face Spaces
device = torch.device("cpu")

# πŸ”Ή Load IBM Granite Model (CPU-Compatible)
MODEL_NAME = "ibm-granite/granite-3.1-2b-instruct"

model = AutoModelForCausalLM.from_pretrained(
    MODEL_NAME,
    device_map="cpu",  # Force CPU execution
    torch_dtype=torch.float32  # Use float32 since Hugging Face runs on CPU
)

tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)

# πŸ”Ή Apply LoRA Fine-Tuning Configuration
lora_config = LoraConfig(
    r=8,
    lora_alpha=32,
    target_modules=["q_proj", "v_proj"],
    lora_dropout=0.1,
    bias="none",
    task_type=TaskType.CAUSAL_LM
)
model = get_peft_model(model, lora_config)
model.eval()

# πŸ›  Function to Read & Extract Text from PDFs
def read_files(file):
    file_context = ""
    reader = PdfReader(file)
    
    for page in reader.pages:
        text = page.extract_text()
        if text:
            file_context += text + "\n"
    
    return file_context.strip()

# πŸ›  Function to Format AI Prompts
def format_prompt(system_msg, user_msg, file_context=""):
    if file_context:
        system_msg += f" The user has provided a contract document. Use its context to generate insights, but do not repeat or summarize the document itself."
    return [
        {"role": "system", "content": system_msg},
        {"role": "user", "content": user_msg}
    ]

# πŸ›  Function to Generate AI Responses
def generate_response(input_text, max_tokens=1000, top_p=0.9, temperature=0.7):
    model_inputs = tokenizer([input_text], return_tensors="pt").to(device)
    
    with torch.no_grad():
        output = model.generate(
            **model_inputs,
            max_new_tokens=max_tokens,
            do_sample=True,
            top_p=top_p,
            temperature=temperature,
            num_return_sequences=1,
            pad_token_id=tokenizer.eos_token_id
        )
    
    return tokenizer.decode(output[0], skip_special_tokens=True)

# πŸ›  Function to Clean AI Output
def post_process(text):
    cleaned = re.sub(r'ζˆ₯+', '', text)  # Remove unwanted symbols
    lines = cleaned.splitlines()
    unique_lines = list(dict.fromkeys([line.strip() for line in lines if line.strip()]))
    return "\n".join(unique_lines)

# πŸ›  Function to Handle RAG with IBM Granite & Streamlit
def granite_simple(prompt, file):
    file_context = read_files(file) if file else ""
    
    system_message = "You are IBM Granite, a legal AI assistant specializing in contract analysis."
    
    messages = format_prompt(system_message, prompt, file_context)
    input_text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    
    response = generate_response(input_text)
    return post_process(response)

# πŸ”Ή Streamlit UI
def main():
    st.set_page_config(page_title="Contract Analysis AI", page_icon="πŸ“œ")

    st.title("πŸ“œ AI-Powered Contract Analysis Tool")
    st.write("Upload a contract document (PDF) for a detailed AI-driven legal and technical analysis.")

    # πŸ”Ή Sidebar Settings
    with st.sidebar:
        st.header("βš™οΈ Settings")
        max_tokens = st.slider("Max Tokens", 50, 1000, 250, 50)
        top_p = st.slider("Top P (sampling)", 0.1, 1.0, 0.9, 0.1)
        temperature = st.slider("Temperature (creativity)", 0.1, 1.0, 0.7, 0.1)

    # πŸ”Ή File Upload Section
    uploaded_file = st.file_uploader("πŸ“‚ Upload a contract document (PDF)", type="pdf")

    if uploaded_file:
        st.success("βœ… File uploaded successfully!")
        st.write("Click the button below to analyze the contract.")

        # Force button to always render
        st.markdown('<style>div.stButton > button {display: block; width: 100%;}</style>', unsafe_allow_html=True)

        if st.button("πŸ” Analyze Document"):
            with st.spinner("Analyzing contract document... ⏳"):
                final_answer = granite_simple(
                    "Perform a detailed technical analysis of the attached contract document, highlighting potential risks, legal pitfalls, compliance issues, and areas where contractual terms may lead to future disputes or operational challenges.",
                    uploaded_file
                )

            # πŸ”Ή Display Analysis Result
            st.subheader("πŸ“‘ Analysis Result")
            st.write(final_answer)

# πŸ”₯ Run Streamlit App
if __name__ == '__main__':
    main()